终身会员
搜索
    上传资料 赚现金
    2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析01
    2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析02
    2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析

    展开
    这是一份2022年四川省内江市东兴区初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,计算的值为,下列运算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )

    A.1个 B.2个 C.3个 D.4个
    2.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
    A.在同一条直线上 B.在同一条抛物线上
    C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
    3.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是(  )

    A.50° B.60° C.70° D.80°
    4.计算的值为( )
    A. B.-4 C. D.-2
    5.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为(  )

    A.(0,1) B.(0,2) C. D.(0,3)
    6.在0.3,﹣3,0,﹣这四个数中,最大的是(  )
    A.0.3 B.﹣3 C.0 D.﹣
    7.在△ABC中,∠C=90°,sinA=,则tanB等于(   )
    A. B.
    C. D.
    8.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为(  )
    A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm2
    9.若代数式的值为零,则实数x的值为(  )
    A.x=0 B.x≠0 C.x=3 D.x≠3
    10.下列运算正确的是(  )
    A.x4+x4=2x8 B.(x2)3=x5 C.(x﹣y)2=x2﹣y2 D.x3•x=x4
    11.下列计算正确的是(  )
    A.2x2+3x2=5x4 B.2x2﹣3x2=﹣1
    C.2x2÷3x2=x2 D.2x2•3x2=6x4
    12.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.观察下列等式:
    第1个等式:a1=;
    第2个等式:a2=;
    第3个等式:a3=;

    请按以上规律解答下列问题:
    (1)列出第5个等式:a5=_____;
    (2)求a1+a2+a3+…+an=,那么n的值为_____.
    14.已知正方形ABCD的边长为8,E为平面内任意一点,连接DE,将线段DE绕点D顺时针旋转90°得到DG,当点B,D,G在一条直线上时,若DG=2,则CE的长为_____.
    15.若分式有意义,则实数x的取值范围是_______.
    16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
    17.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.
    18.计算: 7+(-5)=______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.

    20.(6分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. 
    (1)参加音乐类活动的学生人数为   人,参加球类活动的人数的百分比为 
    (2)请把图2(条形统计图)补充完整; 
    (3)该校学生共600人,则参加棋类活动的人数约为 . 
     (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 

    21.(6分)如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1.
    (1)求反比例函数的解析式;
    (2)点P是x轴上一动点,△ABP的面积为8,求P点坐标.

    22.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.

    23.(8分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    24.(10分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)

    25.(10分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
    26.(12分)嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是   ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.

    27.(12分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).求灯杆CD的高度;求AB的长度(结果精确到0.1米).(参考数据:=1.1.sin37°≈060,cos37°≈0.80,tan37°≈0.75)




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.
    【详解】
    ∵抛物线开口向下,
    ∴a<0,
    而抛物线的对称轴为直线x=-=1,即b=-2a,
    ∴3a+b=3a-2a=a<0,所以①正确;
    ∵2≤c≤3,
    而c=-3a,
    ∴2≤-3a≤3,
    ∴-1≤a≤-,所以②正确;
    ∵抛物线的顶点坐标(1,n),
    ∴x=1时,二次函数值有最大值n,
    ∴a+b+c≥am2+bm+c,
    即a+b≥am2+bm,所以③正确;
    ∵抛物线的顶点坐标(1,n),
    ∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
    ∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
    故选D.
    【点睛】
    本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
    2、A。
    【解析】∵对于点A(x1,y1),B(x2,y2),,
    ∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
    那么,

    又∵,
    ∴。
    ∴。
    令,
    则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
    ∴互不重合的四点C,D,E,F在同一条直线上。故选A。
    3、C
    【解析】
    连接BC,根据题意PA,PB是圆的切线以及可得的度数,然后根据,可得的度数,因为是圆的直径,所以,根据三角形内角和即可求出的度数。
    【详解】
    连接BC.
    ∵PA,PB是圆的切线

    在四边形中,




    所以
    ∵是直径


    故答案选C.

    【点睛】
    本题主要考察切线的性质,四边形和三角形的内角和以及圆周角定理。
    4、C
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=-3=-2,
    故选C.
    【点睛】
    本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    5、B
    【解析】
    根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.
    【详解】
    由,解得 或,
    ∴A(2,1),B(1,0),
    设C(0,m),
    ∵BC=AC,
    ∴AC2=BC2,
    即4+(m-1)2=1+m2,
    ∴m=2,
    故答案为(0,2).
    【点睛】
    本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.
    6、A
    【解析】
    根据正数大于0,0大于负数,正数大于负数,比较即可
    【详解】
    ∵-3<-<0<0.3
    ∴最大为0.3
    故选A.
    【点睛】
    本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
    7、B
    【解析】
    法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
    法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
    8、B
    【解析】
    试题分析:底面积是:9πcm1,
    底面周长是6πcm,则侧面积是:×6π×5=15πcm1.
    则这个圆锥的全面积为:9π+15π=14πcm1.
    故选B.
    考点:圆锥的计算.
    9、A
    【解析】
    根据分子为零,且分母不为零解答即可.
    【详解】
    解:∵代数式的值为零,
    ∴x=0,
    此时分母x-3≠0,符合题意.
    故选A.
    【点睛】
    本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.
    10、D
    【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (x﹣y)2=x2﹣2xy+y2 ,故错误; D. x3•x=x4
    ,正确,故选D.
    11、D
    【解析】
    先利用合并同类项法则,单项式除以单项式,以及单项式乘以单项式法则计算即可得到结果.
    【详解】
    A、2x2+3x2=5x2,不符合题意;
    B、2x2﹣3x2=﹣x2,不符合题意;
    C、2x2÷3x2=,不符合题意;
    D、2x23x2=6x4,符合题意,
    故选:D.
    【点睛】
    本题主要考查了合并同类项法则,单项式除以单项式,单项式乘以单项式法则,正确掌握运算法则是解题关键.
    12、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、 49
    【解析】
    (1)观察等式可得 然后根据此规律就可解决问题;
    (2)只需运用以上规律,采用拆项相消法即可解决问题.
    【详解】
    (1)观察等式,可得以下规律:,

    (2)

    解得:n=49.
    故答案为:49.
    【点睛】
    属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.
    14、2或2.
    【解析】
    本题有两种情况,一种是点在线段的延长线上,一种是点在线段上,解题过程一样,利用正方形和三角形的有关性质,求出、的值,再由勾股定理求出的值,根据证明,可得,即可得到的长.
    【详解】
    解:

    当点在线段的延长线上时,如图3所示.
    过点作于,
    是正方形的对角线,
    ,

    ,
    在中,由勾股定理,得:
    ,
    在和中,,
    ,



    当点在线段上时,如图4所示.
    过作于.
    是正方形的对角线,




    在中,由勾股定理,得:

    在和中,,
    ,



    故答案为或.
    【点睛】
    本题主要考查了勾股定理和三角形全等的证明.
    15、
    【解析】
    由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
    解:∵分式有意义,
    ∴x-1≠2,即x≠1.
    故答案为x≠1.
    本题主要考查分式有意义的条件:分式有意义,分母不能为2.
    16、1.
    【解析】
    设P(0,b),
    ∵直线APB∥x轴,
    ∴A,B两点的纵坐标都为b,
    而点A在反比例函数y=的图象上,
    ∴当y=b,x=-,即A点坐标为(-,b),
    又∵点B在反比例函数y=的图象上,
    ∴当y=b,x=,即B点坐标为(,b),
    ∴AB=-(-)=,
    ∴S△ABC=•AB•OP=••b=1.
    17、17℃.
    【解析】
    根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.
    【详解】
    解:返回舱的最高温度为:21+4=25℃;
    返回舱的最低温度为:21-4=17℃;
    故答案为:17℃.
    【点睛】
    本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.
    18、2
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    .
    故答案为:2.
    【点睛】
    本题考查有理数的加法计算,熟练掌握加法法则是关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、见解析
    【解析】
    由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,AB∥DC,
    ∴∠EAO=∠FCO,
    在△AEO和△CFO中,
    ∴△AEO≌△CFO(ASA),
    ∴OE=OF.
    【点睛】
    本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
    20、(1)7、30%;(2)补图见解析;(3)105人;(3) 
    【解析】
    试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
    (2)根据(1)中所求数据即可补全条形图;
    (3)总人数乘以棋类活动的百分比可得;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
    (2)补全条形图如下:

    (3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
    (4)画树状图如下:

    共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、(1)y=;(2)(4,0)或(0,0)
    【解析】
    (1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;
    (2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用△ABP的面积为8,可求P点坐标.
    【详解】
    解:(1)把x=1代入y=2x﹣4,可得
    y=2×1﹣4=2,
    ∴A(1,2),
    把(1,2)代入y=,可得k=1×2=6,
    ∴反比例函数的解析式为y=;
    (2)根据题意可得:2x﹣4=,
    解得x1=1,x2=﹣1,
    把x2=﹣1,代入y=2x﹣4,可得
    y=﹣6,
    ∴点B的坐标为(﹣1,﹣6).
    设直线AB与x轴交于点C,
    y=2x﹣4中,令y=0,则x=2,即C(2,0),
    设P点坐标为(x,0),则
    ×|x﹣2|×(2+6)=8,
    解得x=4或0,
    ∴点P的坐标为(4,0)或(0,0).
    【点睛】本题主要考查用待定系数法求
    一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。
    22、证明见解析.
    【解析】
    由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
    证明:∵BE∥DF,∴∠ABE=∠D,
    在△ABE和△FDC中,
    ∠ABE=∠D,AB=FD,∠A=∠F
    ∴△ABE≌△FDC(ASA),
    ∴AE=FC.
    “点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
    23、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2).
    【解析】
    分析:(4)过点B作BH⊥OA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.
    (4)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
    详解:(4)过点B作BH⊥OA于H,如图4(4),则有∠BHA=90°=∠COA,∴OC∥BH.
    ∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
    ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
    ∵∠BHA=90°,∠BAO=45°,
    ∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.
    故答案为4.
    (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图4(2).
    由(4)得:OH=2,BH=4.
    ∵OC与⊙M相切于N,∴MN⊥OC.
    设圆的半径为r,则MN=MB=MD=r.
    ∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.
    ∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.
    在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.
    解得:r=2,∴DH=0,即点D与点H重合,∴BD⊥0A,BD=AD.
    ∵BD是⊙M的直径,∴∠BGD=90°,即DG⊥AB,∴BG=AG.
    ∵GF⊥OA,BD⊥OA,∴GF∥BD,∴△AFG∽△ADB,
    ∴===,∴AF=AD=2,GF=BD=2,∴OF=4,
    ∴OG===2.
    同理可得:OB=2,AB=4,∴BG=AB=2.
    设OR=x,则RG=2﹣x.
    ∵BR⊥OG,∴∠BRO=∠BRG=90°,∴BR2=OB2﹣OR2=BG2﹣RG2,
    ∴(2)2﹣x2=(2)2﹣(2﹣x)2.
    解得:x=,∴BR2=OB2﹣OR2=(2)2﹣()2=,∴BR=.
    在Rt△ORB中,sin∠BOR===.
    故答案为.
    (4)①当∠BDE=90°时,点D在直线PE上,如图2.
    此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t. 则有2t=2.
    解得:t=4.则OP=CD=DB=4.
    ∵DE∥OC,∴△BDE∽△BCO,∴==,∴DE=2,∴EP=2,
    ∴点E的坐标为(4,2).
    ②当∠BED=90°时,如图4.
    ∵∠DBE=OBC,∠DEB=∠BCO=90°,∴△DBE∽△OBC,
    ∴==,∴BE=t.
    ∵PE∥OC,∴∠OEP=∠BOC.
    ∵∠OPE=∠BCO=90°,∴△OPE∽△BCO,
    ∴==,∴OE=t.
    ∵OE+BE=OB=2t+t=2.
    解得:t=,∴OP=,OE=,∴PE==,
    ∴点E的坐标为().
    ③当∠DBE=90°时,如图4.
    此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
    则有OD=PE,EA==(6﹣t)=6﹣t,
    ∴BE=BA﹣EA=4﹣(6﹣t)=t﹣2.
    ∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,
    ∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
    在Rt△DBE中,cos∠BED==,∴DE=BE,
    ∴t=t﹣2)=2t﹣4.
    解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
    综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2).


    点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性.
    24、
    【解析】
    试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.
    试题解析:作AD⊥BC于点D,∵∠MBC=60°,
    ∴∠ABC=30°,
    ∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,
    则∠ACB=45°,
    在Rt△ADB中,AB=1000,则AD=500,BD=,
    在Rt△ADC中,AD=500,CD=500, 则BC=.
    答:观察点B到花坛C的距离为米.

    考点:解直角三角形
    25、 (1) ;(2).
    【解析】
    (1)直接利用概率公式求解;
    (2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.
    【详解】
    (1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=;
    (2)画树状图为:

    共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.
    26、(1)10;(2);(3)9环
    【解析】
    (1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.
    (2)先求这组成绩的平均数,再求这组成绩的方差;
    (3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.
    【详解】
    解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;
    (2)嘉淇射击成绩的平均数为:,
    方差为: .
    (3)原来7次成绩为7 8 9 9 10 10 10,
    原来7次成绩的中位数为9,
    当第8次射击成绩为10时,得到8次成绩的中位数为9.5,
    当第8次射击成绩小于10时,得到8次成绩的中位数均为9,
    因此第8次的射击成绩的最大环数为9环.
    【点睛】
    本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.
    27、(1)10米;(2)11.4米
    【解析】
    (1)延长DC交AN于H.只要证明BC=CD即可;
    (2)在Rt△BCH中,求出BH、CH,在 Rt△ADH中求出AH即可解决问题.
    【详解】
    (1)如图,延长DC交AN于H,

    ∵∠DBH=60°,∠DHB=90°,
    ∴∠BDH=30°,
    ∵∠CBH=30°,
    ∴∠CBD=∠BDC=30°,
    ∴BC=CD=10(米);
    (2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,
    ∴DH=15,
    在Rt△ADH中,AH=≈=20,
    ∴AB=AH﹣BH=20﹣8.65=11.4(米).
    【点睛】
    本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

    相关试卷

    2022年四川省遂宁中学初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年四川省遂宁中学初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。

    2022年四川省资阳安岳县联考初中数学毕业考试模拟冲刺卷含解析: 这是一份2022年四川省资阳安岳县联考初中数学毕业考试模拟冲刺卷含解析,共22页。试卷主要包含了﹣2×等内容,欢迎下载使用。

    2022届四川省泸州市初中数学毕业考试模拟冲刺卷含解析: 这是一份2022届四川省泸州市初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了下列各式,估计﹣2的值应该在,下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map