年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析

    2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析第1页
    2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析第2页
    2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析

    展开

    这是一份2022年浙江湖州德清县中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了下面运算正确的是,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列命题中错误的有(  )个
    (1)等腰三角形的两个底角相等 
    (2)对角线相等且互相垂直的四边形是正方形
    (3)对角线相等的四边形为矩形 
    (4)圆的切线垂直于半径
    (5)平分弦的直径垂直于弦
    A.1 B.2 C.3 D.4
    2.二次函数的图像如图所示,下列结论正确是( )

    A. B. C. D.有两个不相等的实数根
    3.二次函数(a≠0)的图象如图所示,则下列命题中正确的是(  )

    A.a >b>c
    B.一次函数y=ax +c的图象不经第四象限
    C.m(am+b)+b<a(m是任意实数)
    D.3b+2c>0
    4.若二次函数的图象经过点(﹣1,0),则方程的解为( )
    A., B., C., D.,
    5.将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).

    A. B. C. D.
    6.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为( )

    A.(2,1) B.(2,0) C.(3,3) D.(3,1)
    7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )
    A.6折 B.7折
    C.8折 D.9折
    8.下面运算正确的是(  )
    A. B.(2a)2=2a2 C.x2+x2=x4 D.|a|=|﹣a|
    9.下列计算正确的是(  )
    A. B.0.00002=2×105
    C. D.
    10.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    11.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉(   )
    A.6.5千克 B.7.5千克 C.8.5千克 D.9.5千克
    12.下列事件中,必然事件是(  )
    A.若ab=0,则a=0
    B.若|a|=4,则a=±4
    C.一个多边形的内角和为1000°
    D.若两直线被第三条直线所截,则同位角相等
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若向北走5km记作﹣5km,则+10km的含义是_____.
    14.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
    15.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为________.(填“>”或“
    【解析】
    观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.
    【详解】
    解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;
    则乙地的日平均气温的方差小,
    故S2甲>S2乙.
    故答案为:>.
    【点睛】
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    16、﹣1.
    【解析】
    试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.
    解:∵扇形OAB的圆心角为90°,扇形半径为2,
    ∴扇形面积为:=π(cm2),
    半圆面积为:×π×12=(cm2),
    ∴SQ+SM =SM+SP=(cm2),
    ∴SQ=SP,
    连接AB,OD,
    ∵两半圆的直径相等,
    ∴∠AOD=∠BOD=45°,
    ∴S绿色=S△AOD=×2×1=1(cm2),
    ∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).
    故答案为﹣1.

    考点:扇形面积的计算.
    17、a1+1ab+b1=(a+b)1
    【解析】
    试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,
    所以a1+1ab+b1=(a+b)1.
    点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.
    18、6或12或1.
    【解析】
    根据题意得k≥0且(3)2﹣4×8≥0,解得k≥.
    ∵整数k<5,∴k=4.
    ∴方程变形为x2﹣6x+8=0,解得x1=2,x2=4.
    ∵△ABC的边长均满足关于x的方程x2﹣6x+8=0,
    ∴△ABC的边长为2、2、2或4、4、4或4、4、2.
    ∴△ABC的周长为6或12或1.
    考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.
    【详解】
    请在此输入详解!

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、共有7人,这个物品的价格是53元.
    【解析】
    根据题意,找出等量关系,列出一元一次方程.
    【详解】
    解:设共有x人,这个物品的价格是y元,
    解得
    答:共有7人,这个物品的价格是53元.
    【点睛】
    本题考查了二元一次方程的应用.
    20、(1)(20+2x),(40﹣x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.
    【解析】
    (1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;
    (2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.
    【详解】
    (1)、设每件童装降价x元时,每天可销售20+2x件,每件盈利40-x元,
    故答案为(20+2x),(40-x);
    (2)、根据题意可得:(20+2x)(40-x)=1200,
    解得:
    即每件童装降价10元或20元时,平均每天盈利1200元;
    (3)、(20+2x)(40-x)=2000, ,
    ∵此方程无解,
    ∴不可能盈利2000元.
    【点睛】
    本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.
    21、
    【解析】
    试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.
    解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.
    在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.
    在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.
    22、(1)1;(2).
    【解析】
    (1)由平行线截线段成比例求得AE的长度;
    (2)利用平面向量的三角形法则解答.
    【详解】
    (1)如图,

    ∵DE∥BC,且DE=BC,
    ∴.
    又AC=6,
    ∴AE=1.
    (2)∵,,
    ∴.
    又DE∥BC,DE=BC,

    【点睛】
    考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
    23、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
    【解析】
    (1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
    【详解】
    (1)(1)当AB是过P点的直径时,AB最长=2×2=4;
    当AB⊥OP时,AB最短, AP=
    ∴AB=2
    (2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
    再做△AEC的外接圆,
    当D与E重合时,S△ADC最大
    故此时四边形ABCD的面积最大,
    ∵∠ABC=90°,AB=80,BC=60
    ∴AC=
    ∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
    S△ADC=
    S△ABC=
    ∴四边形ABCD面积最大值为(2500+2400)平方米.

    【点睛】
    此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
    24、-1
    【解析】
    原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.
    【详解】
    解:原式=﹣4+1+1+1=﹣1.
    【点睛】
    此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    25、(1)证明见解析;(1)①16;②14;
    【解析】
    (1)根据平行四边形的性质得到AD∥BC,AB=DC,AB∥CD于是得到BE=CF,根据全等三角形的性质得到∠A=∠D,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;
    (1)①根据相似三角形的性质得到,求得△GBC的面积为18,于是得到四边形BCFE的面积为16;
    ②根据四边形BCFE的面积为16,列方程得到BC•AB=14,即可得到结论.
    【详解】
    (1)证明:∵GB=GC,
    ∴∠GBC=∠GCB,
    在平行四边形ABCD中,
    ∵AD∥BC,AB=DC,AB∥CD,
    ∴GB-GE=GC-GF,
    ∴BE=CF,
    在△ABE与△DCF中,

    ∴△ABE≌△DCF,
    ∴∠A=∠D,
    ∵AB∥CD,
    ∴∠A+∠D=180°,
    ∴∠A=∠D=90°,
    ∴四边形ABCD是矩形;
    (1)①∵EF∥BC,
    ∴△GFE∽△GBC,
    ∵EF=AD,
    ∴EF=BC,
    ∴,
    ∵△GEF的面积为1,
    ∴△GBC的面积为18,
    ∴四边形BCFE的面积为16,;
    ②∵四边形BCFE的面积为16,
    ∴(EF+BC)•AB=×BC•AB=16,
    ∴BC•AB=14,
    ∴四边形ABCD的面积为14,
    故答案为:14.
    【点睛】
    本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE∽△GBC是解题的关键.
    26、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
    【解析】
    (1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
    (2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
    【详解】
    解:证明:∵四边形是平行四边形,
    ∴,,.
    ∵点、分别是、的中点,
    ∴,.
    ∴.
    在和中,

    ∴.
    解:当四边形是菱形时,四边形是矩形.

    证明:∵四边形是平行四边形,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∵四边形是菱形,
    ∴.
    ∵,
    ∴.
    ∴,.
    ∵,
    ∴.
    ∴.
    即.
    ∴四边形是矩形.
    【点睛】
    本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
    27、(1)y=;y=x+1;(2)∠ACO=45°;(3)00时,00时,−1

    相关试卷

    2022年浙江宁波鄞州区中考数学最后冲刺模拟试卷含解析:

    这是一份2022年浙江宁波鄞州区中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,无理数是等内容,欢迎下载使用。

    2022届浙江省湖州德清县联考中考三模数学试题含解析:

    这是一份2022届浙江省湖州德清县联考中考三模数学试题含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,若点A等内容,欢迎下载使用。

    2021-2022学年浙江省余姚市中考数学最后冲刺模拟试卷含解析:

    这是一份2021-2022学年浙江省余姚市中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,五名女生的体重等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map