2022年长春市二道区达标名校中考数学对点突破模拟试卷含解析
展开
这是一份2022年长春市二道区达标名校中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了如图,点A,B在双曲线y=等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. B.
C. D.
2.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为( )
A.485×105 B.48.5×106 C.4.85×107 D.0.485×108
3.观察下列图案,是轴对称而不是中心对称的是( )
A. B. C. D.
4.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为( )
A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
5.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
6.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )
A.取时的函数值小于0
B.取时的函数值大于0
C.取时的函数值等于0
D.取时函数值与0的大小关系不确定
7.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
A.1种 B.2种 C.3种 D.6种
8.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于( )
A. B.2 C.4 D.3
9.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
10.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )
A.若这5次成绩的中位数为8,则x=8
B.若这5次成绩的众数是8,则x=8
C.若这5次成绩的方差为8,则x=8
D.若这5次成绩的平均成绩是8,则x=8
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.
12.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.
13.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .
14.分解因式:= .
15.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.
16.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.
三、解答题(共8题,共72分)
17.(8分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
此次抽样调查中,共调查了 名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.
18.(8分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
月份(x)
1月
2月
3月
4月
5月
6月
销售量(p)
3.9万台
4.0万台
4.1万台
4.2万台
4.3万台
4.4万台
(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
19.(8分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:
设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.
20.(8分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
21.(8分)如图,AB是⊙O的直径,C、D为⊙O上两点,且,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.
(1)求证:∠F=∠B;
(2)若AB=12,BG=10,求AF的长.
22.(10分)如图,已知一次函数y=x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.
填空:n的值为 ,k的值为 ; 以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标; 考察反比函数的图象,当时,请直接写出自变量的取值范围.
23.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷每人必选且只选一种,在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
这次统计共抽查了______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为______;
将条形统计图补充完整;
该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名.
24.如图,在直角三角形ABC中,
(1)过点A作AB的垂线与∠B的平分线相交于点D
(要求:尺规作图,保留作图痕迹,不写作法);
(2)若∠A=30°,AB=2,则△ABD的面积为 .
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
2、C
【解析】
依据科学记数法的含义即可判断.
【详解】
解:48511111=4.85×117,故本题选择C.
【点睛】
把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:
(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.
3、A
【解析】
试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:
A、是轴对称图形,不是中心对称图形,故本选项符合题意;
B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、是轴对称图形,也是中心对称图形,故本选项不符合题意.
故选A.
点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值
相关试卷
这是一份2022年吉林省长春市重点名校中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2022年安阳市重点达标名校中考数学对点突破模拟试卷含解析,共17页。试卷主要包含了下列各数中是有理数的是等内容,欢迎下载使用。
这是一份2022届重庆市忠县达标名校中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,点A所表示的数的绝对值是等内容,欢迎下载使用。