年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析

    安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析第1页
    安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析第2页
    安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析

    展开

    这是一份安徽省潜山市第四中学2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为(  )
    A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011
    2.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是( )

    A. B. C. D.
    3.计算:得(  )
    A.- B.- C.- D.
    4.一个多边形的每个内角均为120°,则这个多边形是( )
    A.四边形 B.五边形 C.六边形 D.七边形
    5.下列各式计算正确的是( )
    A.a+3a=3a2 B.(–a2)3=–a6 C.a3·a4=a7 D.(a+b)2=a2–2ab+b2
    6.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )
    A.(3,﹣4) B.(﹣3,﹣4)
    C.(﹣4,﹣3) D.(﹣3,4)
    7.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为(  )

    A.① B.② C.③ D.④
    8.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为( )

    A.π B.π C.π D.π
    9.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为() 

    A.30 B.27 C.14 D.32
    10.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为(  )

    A. B.
    C. D.
    11.一次函数的图像不经过的象限是:( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    12.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是(  )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.阅读下面材料:
    在数学课上,老师提出如下问题:

    小亮的作法如下:

    老师说:“小亮的作法正确”
    请回答:小亮的作图依据是______.
    14.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    15.如图,反比例函数y=(x>0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,△ECF的面积为,则k的值为_____.

    16.已知n>1,M=,N=,P=,则M、N、P的大小关系为 .
    17.如果a,b分别是2016的两个平方根,那么a+b﹣ab=___.
    18.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.
    若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
    20.(6分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.
    (1)直接写出点的坐标;
    (2)求线段所对应的函数解析式,并写出自变量的取值范围;
    (3)直接写出乙队工作25天后剩余管线的长度.

    21.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5
    a
    0.2
    6
    18
    0.1
    7
    14
    b
    8
    8
    0.16
    合计
    50
    c
    我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.
    (1)统计表中的a、b、c的值;
    (2)请将频数分布表直方图补充完整;
    (3)求所有被调查学生课外阅读的平均本数;
    (4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.

    22.(8分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.

    请根据图中的信息,回答下列问题:
    (1)这次抽样调查中共调查了  人;
    (2)请补全条形统计图;
    (3)扇形统计图中18﹣23岁部分的圆心角的度数是  ;
    (4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数
    23.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).

    24.(10分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)

    25.(10分)解方程组:.
    26.(12分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
    (1)n= _____________;
    (2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
    (3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
    (4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.

    27.(12分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
    (1)求证:△BDE≌△BCE;
    (2)试判断四边形ABED的形状,并说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.
    【详解】
    解:929亿=92900000000=9.29×11.
    故选B.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    2、B
    【解析】
    根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.
    【详解】
    连接BD,

    ∵四边形ABCD是菱形,∠A=60°,
    ∴∠ADC=120°,
    ∴∠1=∠2=60°,
    ∴△DAB是等边三角形,
    ∵AB=2,
    ∴△ABD的高为,
    ∵扇形BEF的半径为2,圆心角为60°,
    ∴∠4+∠5=60°,∠3+∠5=60°,
    ∴∠3=∠4,
    设AD、BE相交于点G,设BF、DC相交于点H,
    在△ABG和△DBH中,

    ∴△ABG≌△DBH(ASA),
    ∴四边形GBHD的面积等于△ABD的面积,
    ∴图中阴影部分的面积是:S扇形EBF-S△ABD=
    =.
    故选B.
    3、B
    【解析】
    同级运算从左向右依次计算,计算过程中注意正负符号的变化.
    【详解】
    -
    故选B.
    【点睛】
    本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
    4、C
    【解析】
    由题意得,180°(n-2)=120°,
    解得n=6.故选C.
    5、C
    【解析】
    根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.
    【详解】
    A. a+3a=4a,故不正确;
    B. (–a2)3=(-a)6 ,故不正确;
    C. a3·a4=a7 ,故正确;
    D. (a+b)2=a2+2ab+b2,故不正确;
    故选C.
    【点睛】
    本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.
    6、A
    【解析】
    ∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
    ∴点P的坐标为(3,﹣4).
    故选A.
    7、C
    【解析】
    根据正方形的判定定理即可得到结论.
    【详解】
    与左边图形拼成一个正方形,
    正确的选择为③,
    故选C.
    【点睛】
    本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.
    8、D
    【解析】
    点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.
    【详解】
    如图,点F的运动路径的长为弧FF'的长,

    在Rt△ABC中,∵tan∠BAC=,
    ∴∠BAC=30°,
    ∵∠CAF=∠BAC=30°,
    ∴∠BAF=60°,
    ∴∠FAF′=120°,
    ∴弧FF'的长=.
    故选D.
    【点睛】
    本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.
    9、A
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AB//CD,AB=CD,AD//BC,
    ∴△BEF∽△CDF,△BEF∽△AED,
    ∴ ,
    ∵BE:AB=2:3,AE=AB+BE,
    ∴BE:CD=2:3,BE:AE=2:5,
    ∴ ,
    ∵S△BEF=4,
    ∴S△CDF=9,S△AED=25,
    ∴S四边形ABFD=S△AED-S△BEF=25-4=21,
    ∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
    故选A.
    【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
    10、A
    【解析】
    设身高GE=h,CF=l,AF=a,
    当x≤a时,
    在△OEG和△OFC中,
    ∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
    ∴△OEG∽△OFC,
    ∴,
    ∵a、h、l都是固定的常数,
    ∴自变量x的系数是固定值,
    ∴这个函数图象肯定是一次函数图象,即是直线;
    ∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
    故选A.
    11、C
    【解析】
    试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=<0与b=1>0,因此不经过第三象限.
    答案为C
    考点:一次函数的图像
    12、C
    【解析】
    列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
    【详解】
    解:列表得:

    A
    B
    C
    D
    E
    A
    AA
    BA
    CA
    DA
    EA
    B
    AB
    BB
    CB
    DB
    EB
    C
    AC
    BC
    CC
    DC
    EC
    D
    AD
    BD
    CD
    DD
    ED
    E
    AE
    BE
    CE
    DE
    EE
    ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
    ∴恰好选择从同一个口进出的概率为=,
    故选C.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、两点确定一条直线;同圆或等圆中半径相等
    【解析】
    根据尺规作图的方法,两点之间确定一条直线的原理即可解题.
    【详解】
    解:∵两点之间确定一条直线,CD和AB都是圆的半径,
    ∴AB=CD,依据是两点确定一条直线;同圆或等圆中半径相等.
    【点睛】
    本题考查了尺规作图:一条线段等于已知线段,属于简单题,熟悉尺规作图方法是解题关键.
    14、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    15、1
    【解析】
    设E(,3),F(1,),由题意(1-)(3-)= ,求出k即可;
    【详解】
    ∵四边形OACB是矩形,
    ∴OA=BC=3,AC=OB=1,
    设E(,3),F(1,),
    由题意(1-)(3-)=,
    整理得:k2-21k+80=0,
    解得k=1或20,
    k=20时,F点坐标(1,5),不符合题意,
    ∴k=1
    故答案为1.
    【点睛】
    本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题.
    16、M>P>N
    【解析】
    ∵n>1,
    ∴n-1>0,n>n-1,
    ∴M>1,0b; 如果a-b=0,那么a=b; 如果a-bc,那么a>b>c.
    17、1
    【解析】
    先由平方根的应用得出a,b的值,进而得出a+b=0,代入即可得出结论.
    【详解】
    ∵a,b分别是1的两个平方根,

    ∵a,b分别是1的两个平方根,
    ∴a+b=0,
    ∴ab=a×(﹣a)=﹣a2=﹣1,
    ∴a+b﹣ab=0﹣(﹣1)=1,
    故答案为:1.
    【点睛】
    此题主要考查了平方根的性质和意义,解本题的关键是熟练掌握平方根的性质.
    18、1.
    【解析】
    试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.
    考点:整体思想.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)2(2)当x=4时,y最小=88平方米
    【解析】
    (1)根据题意得方程解即可;
    (2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.
    解: (1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
    x(31-2x)=72,即x2-15x+36=1.
    解得x1=3(舍去),x2=2.
    (2)依题意,得8≤31-2x≤3.解得6≤x≤4.
    面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
    ①当x=时,S有最大值,S最大=;
    ②当x=4时,S有最小值,S最小=4×(31-22)=88
    “点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.
    20、(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.
    【解析】
    (1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.
    【详解】
    (1)9000-150×10=7500.
    ∴点B的坐标为(10,7500)
    (2)设直线BC的解析式为y=kx+b,依题意,得:
    解得:
    ∴直线BC的解析式为y=-250x+10000,
    ∵乙队是10天之后加入,40天完成,
    ∴自变量x的取值范围为10≤x≤40.
    (3)依题意,当x=35时,y=-250×35+10000=1250.
    ∴乙队工作25天后剩余管线的长度是1250米.
    【点睛】
    本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.
    21、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;
    【解析】
    (1)根据百分比=计算即可;
    (2)求出a组人数,画出直方图即可;
    (3)根据平均数的定义计算即可;
    (4)利用样本估计总体的思想解决问题即可;
    【详解】
    (1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
    (2)补全图形如下:

    (3)所有被调查学生课外阅读的平均本数==6.4(本)
    (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).
    【点睛】
    本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
    22、 (1)1500;(2)见解析;(3)108°;(3)12~23岁的人数为400万
    【解析】
    试题分析:(1)根据30-35岁的人数和所占的百分比求调查的人数;
    (2)从调查的总人数中减去已知的三组的人数,即可得到12-17岁的人数,据此补全条形统计图;
    (3)先计算18-23岁的人数占调查总人数的百分比,再计算这一组所对应的圆心角的度数;
    (4)先计算调查中12﹣23岁的人数所占的百分比,再求网瘾人数约为2000万中的12﹣23岁的人数.
    试题解析:解:(1)结合条形统计图和扇形统计图可知,30-35岁的人数为330人,所占的百分比为22%,所以调查的总人数为330÷22%=1500人.
    故答案为1500 ;
    (2)1500-450-420-330=300人.
    补全的条形统计图如图:

    (3)18-23岁这一组所对应的圆心角的度数为360×=108°.
    故答案为108° ;
    (4)(300+450)÷1500=50%,.
    考点:条形统计图;扇形统计图.
    23、 (1)见解析;(2)
    【解析】
    (1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;
    (2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.
    【详解】
    (1)证明:∵∠B=60°,OB=OC,
    ∴△BOC是等边三角形,
    ∴∠1=∠3=60°,
    ∵OC平分∠AOB,
    ∴∠1=∠2,
    ∴∠2=∠3,
    ∴OA∥BD,
    ∵∠BDM=90°,
    ∴∠OAM=90°,
    又OA为⊙O的半径,
    ∴AM是⊙O的切线
    (2)解:连接AC,
    ∵∠3=60°,OA=OC,
    ∴△AOC是等边三角形,
    ∴∠OAC=60°,
    ∴∠CAD=30°,
    ∵OC=AC=4,
    ∴CD=2,
    ∴AD=2 ,
    ∴S阴影=S梯形OADC﹣S扇形OAC= ×(4+2)×2﹣.
    【点睛】
    本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.
    24、客车不能通过限高杆,理由见解析
    【解析】
    根据DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根据cos∠EDF=,求出DF的值,即可判断.
    【详解】
    ∵DE⊥BC,DF⊥AB,
    ∴∠EDF=∠ABC=14°.
    在Rt△EDF中,∠DFE=90°,
    ∵cos∠EDF=,
    ∴DF=DE•cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.
    ∵限高杆顶端到桥面的距离DF为2.1米,小于客车高2.5米,
    ∴客车不能通过限高杆.

    【点睛】
    考查解直角三角形,选择合适的锐角三角函数是解题的关键.
    25、;;.
    【解析】
    分析:
    把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.
    详解:
    由方程可得,,;
    则原方程组转化为(Ⅰ)或 (Ⅱ),
    解方程组(Ⅰ)得,
    解方程组(Ⅱ)得 ,
    ∴原方程组的解是 .
    点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.
    26、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
    【解析】
    (2)将(0,-2)代入二次函数解析式中即可求出n值;
    (2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
    (2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
    (4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
    【详解】
    解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
    ∴n=﹣2.
    故答案为﹣2.
    (2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
    ∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
    解得:m2=0,m2=﹣2.
    ∵m≠0,
    ∴m=﹣2.
    (2)∵二次函数解析式为y=mx2﹣2mx﹣2,
    ∴二次函数图象的对称轴为直线x=﹣=2.
    ∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
    ∴另一交点的横坐标为2×2﹣4=﹣2,
    ∴另一个交点的坐标为(﹣2,5).
    故答案为(﹣2,5).
    (4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
    ∴0=9m﹣6m﹣2,
    ∴m=2,
    ∴二次函数解析式为y=x2﹣2x﹣2.
    设直线AC的解析式为y=kx+b(k≠0),
    将A(2,0)、C(0,﹣2)代入y=kx+b,得:
    ,解得:,
    ∴直线AC的解析式为y=x﹣2.
    过点P作PD⊥x轴于点D,交AC于点Q,如图所示.

    设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
    ∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
    ∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
    ∴当a=时,△PAC的面积取最大值,最大值为 .
    【点睛】
    本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
    27、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.

    相关试卷

    重庆市中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份重庆市中学2021-2022学年中考试题猜想数学试卷含解析,共20页。

    乐山市重点中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份乐山市重点中学2021-2022学年中考试题猜想数学试卷含解析,共19页。

    黄山市~2021-2022学年中考试题猜想数学试卷含解析:

    这是一份黄山市~2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map