开学活动
搜索
    上传资料 赚现金

    安阳市重点中学2022年中考一模数学试题含解析

    安阳市重点中学2022年中考一模数学试题含解析第1页
    安阳市重点中学2022年中考一模数学试题含解析第2页
    安阳市重点中学2022年中考一模数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安阳市重点中学2022年中考一模数学试题含解析

    展开

    这是一份安阳市重点中学2022年中考一模数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,化简÷的结果是,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为
    A. B. C. D.
    2.在反比例函数的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是( )
    A.k>1 B.k>0 C.k≥1 D.k<1
    3.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是(  )
    A. B. C. D.
    4.化简÷的结果是( )
    A. B. C. D.2(x+1)
    5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )
    A. B. C. D.
    6.下列运算正确的是(  )
    A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7
    7.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    8.下列计算正确的是( )
    A.a²+a²=a4 B.(-a2)3=a6
    C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
    9.如图,已知,为反比例函数图象上的两点,动点在轴正半轴上运动,当线段与线段之差达到最大时,点的坐标是( )

    A. B. C. D.
    10.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是( )
    人数
    3
    4
    2
    1
    分数
    80
    85
    90
    95
    A.85和82.5 B.85.5和85 C.85和85 D.85.5和80
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知,,则________.

    12.因式分解:4x2y﹣9y3=_____.
    13.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.

    14.分解因式:8a3﹣8a2+2a=_____.
    15.如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点.若四边形EFGH为菱形,则对角线AC、BD应满足条件_____.

    16.不等式组的解集为_____.
    17.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为 .
    三、解答题(共7小题,满分69分)
    18.(10分)先化简,再求值:,其中x=.
    19.(5分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
    销售时段
    销售数量
    销售收入
    A种型号
    B种型号
    第一周
    3台
    5台
    1800元
    第二周
    4台
    10台
    3100元
    (进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
    20.(8分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.

    21.(10分)如图,抛物线与x轴交于点A,B,与轴交于点C,过点C作CD∥x轴,交抛物线的对称轴于点D,连结BD,已知点A坐标为(-1,0).
    求该抛物线的解析式;求梯形COBD的面积.
    22.(10分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.
    (1)根据图中所给信息填写下表:
    投中个数统计
    平均数
    中位数
    众数
    A
       
    8
       
    B
    7
       
    7
    (2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.

    23.(12分)如图,中,于,点分别是的中点.

    (1)求证:四边形是菱形
    (2)如果,求四边形的面积
    24.(14分)阅读下面材料:
    已知:如图,在正方形ABCD中,边AB=a1.
    按照以下操作步骤,可以从该正方形开始,构造一系列的正方形,它们之间的边满足一定的关系,并且一个比一个小.
    操作步骤
    作法
    由操作步骤推断(仅选取部分结论)
    第一步
    在第一个正方形ABCD的对角线AC上截取AE=a1,再作EF⊥AC于点E,EF与边BC交于点F,记CE=a2
    (i)△EAF≌△BAF(判定依据是①);
    (ii)△CEF是等腰直角三角形;
    (iii)用含a1的式子表示a2为②:
    第二步
    以CE为边构造第二个正方形CEFG;

    第三步
    在第二个正方形的对角线CF上截取FH=a2,再作IH⊥CF于点H,IH与边CE交于点I,记CH=a3:
    (iv)用只含a1的式子表示a3为③:
    第四步
    以CH为边构造第三个正方形CHIJ

    这个过程可以不断进行下去.若第n个正方形的边长为an,用只含a1的式子表示an为④
    请解决以下问题:
    (1)完成表格中的填空:
    ①   ;②   ;③   ;④   ;
    (2)根据以上第三步、第四步的作法画出第三个正方形CHIJ(不要求尺规作图).




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    解:5657万用科学记数法表示为,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.
    2、A
    【解析】
    根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.
    【详解】
    解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,
    即可得k﹣1>0,
    解得k>1.
    故选A.
    【点评】
    本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
    3、C
    【解析】
    混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
    【详解】
    设瓶子的容积即酒精与水的和是1,
    则纯酒精之和为:1×+1×=+,
    水之和为:+,
    ∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
    故选C.
    【点睛】
    本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
    4、A
    【解析】
    原式利用除法法则变形,约分即可得到结果.
    【详解】
    原式=•(x﹣1)=.
    故选A.
    【点睛】
    本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键.
    5、C
    【解析】
    设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
    【详解】
    解:设大马有x匹,小马有y匹,由题意得:,
    故选C.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    6、B
    【解析】
    根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.
    【详解】
    A、a3+a3=2a3,故A错误;
    B、a6÷a2=a4,故B正确;
    C、a3•a5=a8,故C错误;
    D、(a3)4=a12,故D错误.
    故选:B.
    【点睛】
    此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.
    7、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.
    8、D
    【解析】
    各项计算得到结果,即可作出判断.
    【详解】
    A、原式=2a2,不符合题意;
    B、原式=-a6,不符合题意;
    C、原式=a2+2ab+b2,不符合题意;
    D、原式=-4b,符合题意,
    故选:D.
    【点睛】
    此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
    9、D
    【解析】
    求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.
    【详解】
    把,代入反比例函数 ,得:,,

    在中,由三角形的三边关系定理得:,
    延长交轴于,当在点时,,

    即此时线段与线段之差达到最大,
    设直线的解析式是,
    把,的坐标代入得:,
    解得:,
    直线的解析式是,
    当时,,即,
    故选D.
    【点睛】
    本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.
    10、B
    【解析】
    根据众数及平均数的定义,即可得出答案.
    【详解】
    解:这组数据中85出现的次数最多,故众数是85;平均数= (80×3+85×4+90×2+95×1)=85.5.
    故选:B.
    【点睛】
    本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、65°
    【解析】
    根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】

    ∵m∥n,∠1=105°,
    ∴∠3=180°−∠1=180°−105°=75°
    ∴∠α=∠2−∠3=140°−75°=65°
    故答案为:65°.
    【点睛】
    此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.
    12、y(2x+3y)(2x-3y)
    【解析】
    直接提取公因式y,再利用平方差公式分解因式即可.
    【详解】
    4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    13、﹣2
    【解析】
    连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的 O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.
    【详解】
    连结AE,如图1,

    ∵∠BAC=90°,AB=AC,BC=,
    ∴AB=AC=4,
    ∵AD为直径,
    ∴∠AED=90°,
    ∴∠AEB=90°,
    ∴点E在以AB为直径的O上,
    ∵O的半径为2,
    ∴当点O、E. C共线时,CE最小,如图2

    在Rt△AOC中,∵OA=2,AC=4,
    ∴OC=,
    ∴CE=OC−OE=2﹣2,
    即线段CE长度的最小值为2﹣2.
    故答案为:2﹣2.
    【点睛】
    此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质.
    14、2a(2a﹣1)2
    【解析】
    提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.
    【详解】
    原式=2a(4a2-4a+1)=2a(2a﹣1)2.
    【点睛】
    本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.
    15、AC=BD.
    【解析】
    试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形.
    试题解析:添加的条件应为:AC=BD.
    证明:∵E,F,G,H分别是边AB、BC、CD、DA的中点,
    ∴在△ADC中,HG为△ADC的中位线,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,
    则HG∥EF且HG=EF,
    ∴四边形EFGH为平行四边形,又AC=BD,所以EF=EH,
    ∴四边形EFGH为菱形.
    考点:1.菱形的性质;2.三角形中位线定理.
    16、﹣2≤x<
    【解析】
    根据解不等式的步骤从而得到答案.
    【详解】

    解不等式①可得:x≥-2,
    解不等式②可得:x<,
    故答案为-2≤x<.
    【点睛】
    本题主要考查了解不等式,解本题的要点在于分别求解①,②不等式,从而得到答案.
    17、5
    【解析】
    试题分析:根据图形可知圆锥的侧面展开图的弧长为2π×10÷2=10π(cm),因此圆锥的底面半径为10π÷2π=5(cm),因此圆锥的高为:=5(cm).

    考点:圆锥的计算

    三、解答题(共7小题,满分69分)
    18、1+
    【解析】
    先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
    【详解】
    解:原式



    当时,
    原式=
    【点睛】
    考查分式的混合运算,掌握运算顺序是解题的关键.
    19、 (1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.
    【解析】
    (1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;
    (2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;
    (3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
    【详解】
    (1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.
    依题意,得解得
    答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.
    (2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.
    依题意,得200a+170(30-a)≤5400,
    解得a≤10.
    答:A种型号的电风扇最多能采购10台.
    (3)依题意,有(250-200)a+(210-170)(30-a)=1400,
    解得a=20.
    ∵a≤10,
    ∴在(2)的条件下超市不能实现利润为1400元的目标.
    【点睛】
    本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.
    20、答案见解析
    【解析】
    试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
    试题解析:连接BD,
    ∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
    ∴MN∥BD,MN= BD,
    ∵ ,
    ∴ .
    21、(1)(2)
    【解析】
    (1)将A坐标代入抛物线解析式,求出a的值,即可确定出解析式.
    (2)抛物线解析式令x=0求出y的值,求出OC的长,根据对称轴求出CD的长,令y=0求出x的值,确定出OB的长,根据梯形面积公式即可求出梯形COBD的面积.
    【详解】
    (1)将A(―1,0)代入中,得:0=4a+4,解得:a=-1.
    ∴该抛物线解析式为.
    (2)对于抛物线解析式,令x=0,得到y=2,即OC=2,
    ∵抛物线的对称轴为直线x=1,∴CD=1.
    ∵A(-1,0),∴B(2,0),即OB=2.
    ∴.
    22、(1)7,9,7;(2)应该选派B;
    【解析】
    (1)分别利用平均数、中位数、众数分析得出答案;
    (2)利用方差的意义分析得出答案.
    【详解】
    (1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
    B成绩排序后为6,7,7,7,7,8,故中位数为7;
    故答案为:7,9,7;
    (2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
    = [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= ;
    从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
    【点睛】
    此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
    23、 (1)证明见解析;(2).
    【解析】
    (1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;
    (2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S.
    【详解】
    解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,
    ∴Rt△ABD中,DE=AB=AE,
    Rt△ACD中,DF=AC=AF,
    又∵AB=AC,点E、F分别是AB、AC的中点,
    ∴AE=AF,
    ∴AE=AF=DE=DF,
    ∴四边形AEDF是菱形;
    (2)如图,

    ∵AB=AC=BC=10,
    ∴EF=5,AD=5,
    ∴菱形AEDF的面积S=EF•AD=×5×5=.
    【点睛】
    本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.
    24、(1)①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;(2)见解析.
    【解析】
    (1)①由题意可知在Rt△EAF和Rt△BAF中,AE=AB,AF=AF,所以Rt△EAF≌Rt△BAF;
    ②由题意得AB=AE=a1,AC=a1,则CE=a2=a1﹣a1=(﹣1)a1;
    ③同上可知CF=CE=(-1)a1,FH=EF=a2,则CH=a3=CF﹣FH=(-1)2a1;
    ④同理可得an=(-1)n-1a1;
    (2)根据题意画图即可.
    【详解】
    解:(1)①斜边和一条直角边分别相等的两个直角三角形全等;
    理由是:如图1,在Rt△EAF和Rt△BAF中,
    ∵,
    ∴Rt△EAF≌Rt△BAF(HL);
    ②∵四边形ABCD是正方形,
    ∴AB=BC=a1,∠ABC=90°,
    ∴AC=a1,
    ∵AE=AB=a1,
    ∴CE=a2=a1﹣a1=(﹣1)a1;
    ③∵四边形CEFG是正方形,
    ∴△CEF是等腰直角三角形,
    ∴CF=CE=(-1)a1,
    ∵FH=EF=a2,
    ∴CH=a3=CF﹣FH=(-1)a1﹣(-1)a1=(-1)2a1;
    ④同理可得:an=(-1)n-1a1;
    故答案为①斜边和一条直角边分别相等的两个直角三角形全等②(﹣1)a1;③(-1)2a1;④(-1)n-1a1;
    (2)所画正方形CHIJ见右图.


    相关试卷

    2023年河南省安阳市中考一模数学试题(含解析):

    这是一份2023年河南省安阳市中考一模数学试题(含解析),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023年河南省安阳市中考数学一模试卷(含解析):

    这是一份2023年河南省安阳市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022届郑州市重点中学中考数学最后一模试卷含解析:

    这是一份2022届郑州市重点中学中考数学最后一模试卷含解析,共26页。试卷主要包含了7的相反数是,如图,,则的度数为,关于的叙述正确的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map