![福建省龙海市第二中学2021-2022学年中考冲刺卷数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13126295/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省龙海市第二中学2021-2022学年中考冲刺卷数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13126295/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省龙海市第二中学2021-2022学年中考冲刺卷数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13126295/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省龙海市第二中学2021-2022学年中考冲刺卷数学试题含解析
展开
这是一份福建省龙海市第二中学2021-2022学年中考冲刺卷数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,我们知道等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.估计的运算结果应在哪个两个连续自然数之间( )
A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
2.下列运算正确的是( )
A.(﹣2a)3=﹣6a3 B.﹣3a2•4a3=﹣12a5
C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a
3.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是( )
A. B. C. D.
4.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A.7 B.8 C.9 D.10
5.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A.(,2) B.(4,1) C.(4,) D.(4,)
6.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )
A.3.5 B.3 C.4 D.4.5
7.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )
A.40° B.50° C.60° D.70°
8.下表是某校合唱团成员的年龄分布.
年龄/岁
13
14
15
16
频数
5
15
x
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
9.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1 B. C.-1 D.+1
10.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_____.
12.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.
13.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.
14.如图,在△ABC中,AD、BE分别是BC、AC两边中线,则=_____.
15.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等.设甲每小时搬运xkg货物,则可列方程为_____.
16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.
三、解答题(共8题,共72分)
17.(8分)先化简代数式:,再代入一个你喜欢的数求值.
18.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.
19.(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.
20.(8分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
21.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
(1)如图1,当0<t<2时,求证:DF∥CB;
(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
22.(10分)反比例函数在第一象限的图象如图所示,过点A(2,0)作x轴的垂线,交反比例函数的图象于点M,△AOM的面积为2.
求反比例函数的解析式;设点B的坐标为(t,0),其中t>2.若以AB为一边的正方形有一个顶点在反比例函数的图象上,求t的值.
23.(12分)如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).
24.对于方程=1,某同学解法如下:
解:方程两边同乘6,得3x﹣2(x﹣1)=1 ①
去括号,得3x﹣2x﹣2=1 ②
合并同类项,得x﹣2=1 ③
解得x=3 ④
∴原方程的解为x=3 ⑤上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
故选C.
点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
2、B
【解析】
先根据同底数幂的乘法法则进行运算即可。
【详解】
A.;故本选项错误;
B. ﹣3a2•4a3=﹣12a5; 故本选项正确;
C.;故本选项错误;
D. 不是同类项不能合并; 故本选项错误;
故选B.
【点睛】
先根据同底数幂的乘法法则, 幂的乘方, 积的乘方, 合并同类项分别求出每个式子的值, 再判断即可.
3、A
【解析】
分析:面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.
详解:A、上面小下面大,侧面是曲面,故本选项正确;
B、上面大下面小,侧面是曲面,故本选项错误;
C、是一个圆台,故本选项错误;
D、下面小上面大侧面是曲面,故本选项错误;
故选A.
点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.
4、C
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
根据三视图知,该几何体中小正方体的分布情况如下图所示:
所以组成这个几何体的小正方体个数最多为9个,
故选C.
【点睛】
考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
5、D
【解析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′= =2,于是得到结论.
【详解】
解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),
故选:D.
【点睛】
本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.
6、B
【解析】
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=10°,
∵BD平分∠ABC,
∴∠ABD=∠ABC=10°,
∴∠A=∠ABD,
∴BD=AD=6,
∵在Rt△BCD中,P点是BD的中点,
∴CP=BD=1.
故选B.
7、B
【解析】
解:∵由作法可知直线l是线段AB的垂直平分线,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故选B.
8、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
9、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
10、A
【解析】
分析:甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,所以,。故选A。
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1
【解析】
根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.
【详解】
∵SEBMF=SFGDN,SEBMF=1,∴SFGDN=1.
【点睛】
本题考查面积的求解,解题的关键是读懂题意.
12、3或1.2
【解析】
【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.
【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,
∵△PBE∽△DBC,
∴∠PBE=∠DBC,∴点P在BD上,
如图1,当DP=DA=8时,BP=2,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=2:10,
∴PE:6=2:10,
∴PE=1.2;
如图2,当AP=DP时,此时P为BD中点,
∵△PBE∽△DBC,
∴PE:CD=PB:DB=1:2,
∴PE:6=1:2,
∴PE=3;
综上,PE的长为1.2或3,
故答案为:1.2或3.
【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.
13、4
【解析】
试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.
点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.
14、
【解析】
利用三角形中位线的性质定理以及相似三角形的性质即可解决问题;
【详解】
∵AE=EC,BD=CD,
∴DE∥AB,DE=AB,
∴△EDC∽△ABC,
∴=,
故答案是:.
【点睛】
考查相似三角形的判定和性质、三角形中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.
15、=
【解析】
设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.
【详解】
解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,
由题意得:=.
故答案是:=.
【点睛】
本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.
16、1.
【解析】
设P(0,b),
∵直线APB∥x轴,
∴A,B两点的纵坐标都为b,
而点A在反比例函数y=的图象上,
∴当y=b,x=-,即A点坐标为(-,b),
又∵点B在反比例函数y=的图象上,
∴当y=b,x=,即B点坐标为(,b),
∴AB=-(-)=,
∴S△ABC=•AB•OP=••b=1.
三、解答题(共8题,共72分)
17、
【解析】
先根据分式的运算法则进行化简,再代入使分式有意义的值计算.
【详解】
解:原式
.
使原分式有意义的值可取2,
当时,原式.
【点睛】
考核知识点:分式的化简求值.掌握分式的运算法则是关键.
18、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.
【解析】
(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;
(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.
【详解】
(1)设每个月生产成本的下降率为x,
根据题意得:400(1﹣x)2=361,
解得:x1=0.05=5%,x2=1.95(不合题意,舍去).
答:每个月生产成本的下降率为5%;
(2)361×(1﹣5%)=342.95(万元),
答:预测4月份该公司的生产成本为342.95万元.
【点睛】
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.
19、 (1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.
【解析】
【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;
(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;
(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.
【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y随x的增大而减小,
∵x为正数,
∴x=34时,y取得最大值,最大值为46600,
答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;
(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①当0<a<100时,y随x的增大而减小,
∴当x=34时,y取最大值,
即商店购进34台A型电脑和66台B型电脑的销售利润最大.
②a=100时,a﹣100=0,y=50000,
即商店购进A型电脑数量满足33≤x≤60的整数时,均获得最大利润;
③当100<a<200时,a﹣100>0,y随x的增大而增大,
∴当x=60时,y取得最大值.
即商店购进60台A型电脑和40台B型电脑的销售利润最大.
【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.
20、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
【点睛】
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
21、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.
【详解】
(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).
【点睛】
本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
22、(2)(2)7或2.
【解析】
试题分析:(2)根据反比例函数k的几何意义得到|k|=2,可得到满足条件的k=6,于是得到反比例函数解析式为y=;
(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(2,6),则AB=AM=6,所以t=2+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,根据正方形的性质得AB=BC=t-2,则C点坐标为(t,t-2),然后利用反比例函数图象上点的坐标特征得到t(t-2)=6,再解方程得到满足条件的t的值.
试题解析:(2)∵△AOM的面积为2,
∴|k|=2,
而k>0,
∴k=6,
∴反比例函数解析式为y=;
(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=的图象上,则D点与M点重合,即AB=AM,
把x=2代入y=得y=6,
∴M点坐标为(2,6),
∴AB=AM=6,
∴t=2+6=7;
当以AB为一边的正方形ABCD的顶点C在反比例函数y=的图象上,
则AB=BC=t-2,
∴C点坐标为(t,t-2),
∴t(t-2)=6,
整理为t2-t-6=0,解得t2=2,t2=-2(舍去),
∴t=2,
∴以AB为一边的正方形有一个顶点在反比例函数y=的图象上时,t的值为7或2.
考点:反比例函数综合题.
23、39米
【解析】
过点A作AE⊥CD,垂足为点E, 在Rt△ADE中,利用三角函数求出的长,在Rt△ACE中,求出的长即可得.
【详解】
解:过点A作AE⊥CD,垂足为点E,
由题意得,AE= BC=28,∠EAD=25°,∠EAC=43°,
在Rt△ADE中,∵,∴,
在Rt△ACE中,∵,∴,
∴(米),
答:建筑物CD的高度约为39米.
24、(1)错误步骤在第①②步.(2)x=4.
【解析】
(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
(2)注重改正错误,按以上步骤进行即可.
【详解】
解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6 ①
去括号,得3x﹣2x+2=6 ②
∴错误步骤在第①②步.
(2)方程两边同乘6,得3x﹣2(x﹣1)=6
去括号,得3x﹣2x+2=6
合并同类项,得x+2=6
解得x=4
∴原方程的解为x=4
【点睛】
本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.
相关试卷
这是一份福建省泉州市成功中学2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各运算中,计算正确的是,如果a﹣b=5,那么代数式等内容,欢迎下载使用。
这是一份福建省福州市部分校2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了下列各组数中,互为相反数的是,下列计算正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
这是一份2021-2022学年福建省漳州市龙海市第二中学中考数学最后一模试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列实数中,有理数是,若分式有意义,则a的取值范围为,计算 的结果是等内容,欢迎下载使用。