广东东莞光明中学2021-2022学年中考冲刺卷数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若,则的值为( )
A.12 B.2 C.3 D.0
2.若分式有意义,则a的取值范围是( )
A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数
3.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1 B.﹣1 C.0或﹣1 D.1或﹣1
4.如果(,均为非零向量),那么下列结论错误的是( )
A.// B.-2=0 C.= D.
5.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到,则四边形的周长为( )
A.8 B.10 C.12 D.16
6.计算(-18)÷9的值是( )
A.-9 B.-27 C.-2 D.2
7.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则( )
A.a≠±1 B.a=1 C.a=﹣1 D.a=±1
8.如图,矩形ABCD内接于⊙O,点P是上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为( )
A. B. C. D.
9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).
A.50° B.40° C.30° D.25°
10.下列计算正确的是( )
A.a²+a²=a4 B.(-a2)3=a6
C.(a+1)2=a2+1 D.8ab2÷(-2ab)=-4b
二、填空题(共7小题,每小题3分,满分21分)
11.如图,反比例函数y=(x>0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,△ECF的面积为,则k的值为_____.
12.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.
13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
14.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.
15.函数的自变量的取值范围是.
16.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
17.一个凸边形的内角和为720°,则这个多边形的边数是__________________
三、解答题(共7小题,满分69分)
18.(10分)如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.
(1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.
19.(5分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).
(1)求抛物线F的解析式;
(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
20.(8分)如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.CD与BE相等?若相等,请证明;若不相等,请说明理由;若∠BAC=90°,求证:BF1+CD1=FD1.
21.(10分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别
成绩(分)
频数(人数)
频率
一
2
0.04
二
10
0.2
三
14
b
四
a
0.32
五
8
0.16
请根据表格提供的信息,解答以下问题:本次决赛共有 名学生参加;直接写出表中a= ,b= ;请补全下面相应的频数分布直方图;
若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .
22.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
23.(12分)如图,在中,,且,,为的中点,于点,连结,.
(1)求证:;
(2)当为何值时,的值最大?并求此时的值.
24.(14分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;
(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
(3)PA、PB、PC满足的等量关系为 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值.
【详解】
∵,
∴,
∴.
故选:A.
【点睛】
本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键.
2、A
【解析】
分析:根据分母不为零,可得答案
详解:由题意,得
,解得
故选A.
点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.
3、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
4、B
【解析】
试题解析:向量最后的差应该还是向量. 故错误.
故选B.
5、B
【解析】
根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.
根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,
∴AD=1,BF=BC+CF=BC+1,DF=AC;
又∵AB+BC+AC=8,
∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.
故选C.
“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.
6、C
【解析】
直接利用有理数的除法运算法则计算得出答案.
【详解】
解:(-18)÷9=-1.
故选:C.
【点睛】
此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
7、C
【解析】
根据一元一次方程的定义即可求出答案.
【详解】
由题意可知:,解得a=−1
故选C.
【点睛】
本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.
8、A
【解析】
连接BD,根据圆周角定理可得cos∠BDC=cos∠BPC,又BD为直径,则∠BCD=90°,设DC为x,则BC为2x,根据勾股定理可得BD=x,再根据cos∠BDC===,即可得出结论.
【详解】
连接BD,
∵四边形ABCD为矩形,
∴BD过圆心O,
∵∠BDC=∠BPC(圆周角定理)
∴cos∠BDC=cos∠BPC
∵BD为直径,
∴∠BCD=90°,
∵=,
∴设DC为x,
则BC为2x,
∴BD===x,
∴cos∠BDC===,
∵cos∠BDC=cos∠BPC,
∴cos∠BPC=.
故答案选A.
【点睛】
本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.
9、B
【解析】
解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,
根据平角为180°可得,∠2=90°﹣50°=40°.
故选B.
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
10、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=2a2,不符合题意;
B、原式=-a6,不符合题意;
C、原式=a2+2ab+b2,不符合题意;
D、原式=-4b,符合题意,
故选:D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
设E(,3),F(1,),由题意(1-)(3-)= ,求出k即可;
【详解】
∵四边形OACB是矩形,
∴OA=BC=3,AC=OB=1,
设E(,3),F(1,),
由题意(1-)(3-)=,
整理得:k2-21k+80=0,
解得k=1或20,
k=20时,F点坐标(1,5),不符合题意,
∴k=1
故答案为1.
【点睛】
本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题.
12、
【解析】
试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1.
考点:相似三角形的性质.
13、24
【解析】
先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
【详解】
y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
当t=20-4=16时,y=576,
600-576=24,
即最后4s滑行的距离是24m,
故答案为24.
【点睛】
本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.
14、60°
【解析】
解:∵BD是⊙O的直径,
∴∠BCD=90°(直径所对的圆周角是直角),
∵∠CBD=30°,
∴∠D=60°(直角三角形的两个锐角互余),
∴∠A=∠D=60°(同弧所对的圆周角相等);
故答案是:60°
15、x≠1
【解析】
该题考查分式方程的有关概念
根据分式的分母不为0可得
X-1≠0,即x≠1
那么函数y=的自变量的取值范围是x≠1
16、≤M≤6
【解析】
把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
【详解】
由得:
即 所以
由得:
即 所以
∴
∴不等式两边同时乘以−2得:
,即
两边同时加上2得:即
∵
∴
∴
则M的取值范围是≤M≤6.
故答案为:≤M≤6.
【点睛】
此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
17、1
【解析】
设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
【详解】
解:设这个多边形的边数是n
根据多边形内角和公式可得
解得.
故答案为:1.
【点睛】
此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)正方形的边长为.
【解析】
(1)由正方形的性质得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA证得△ABE≌△BCF即可得出结论;
(2)证出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG•AE,设EG=x,则AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出结果.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠BAE+∠AEB=90°,
∵AE⊥BF,垂足为G,
∴∠CBF+∠AEB=90°,
∴∠BAE=∠CBF,
在△ABE与△BCF中,
,
∴△ABE≌△BCF(ASA),
∴AE=BF;
(2)解:∵四边形ABCD为正方形,
∴∠ABC=90°,
∵AE⊥BF,
∴∠BGE=∠ABE=90°,
∵∠BEG=∠AEB,
∴△BGE∽△ABE,
∴=,
即:BE2=EG•AE,
设EG=x,则AE=AG+EG=2+x,
∴()2=x•(2+x),
解得:x1=1,x2=﹣3(不合题意舍去),
∴AE=3,
∴AB===.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握正方形的性质,证明三角形全等与相似是解题的关键.
19、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
【解析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
【详解】
(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
∴,解得:,
∴抛物线F的解析式为y=x1+x.
(1)将y=x+m代入y=x1+x,得:x1=m,
解得:x1=﹣,x1=,
∴y1=﹣+m,y1=+m,
∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
(3)∵m=,
∴点A的坐标为(﹣,),点B的坐标为(,1).
∵点A′是点A关于原点O的对称点,
∴点A′的坐标为(,﹣).
①△AA′B为等边三角形,理由如下:
∵A(﹣,),B(,1),A′(,﹣),
∴AA′=,AB=,A′B=,
∴AA′=AB=A′B,
∴△AA′B为等边三角形.
②∵△AA′B为等边三角形,
∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
(i)当A′B为对角线时,有,
解得,
∴点P的坐标为(1,);
(ii)当AB为对角线时,有,
解得:,
∴点P的坐标为(﹣,);
(iii)当AA′为对角线时,有,
解得:,
∴点P的坐标为(﹣,﹣1).
综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
20、(1)CD=BE,理由见解析;(1)证明见解析.
【解析】
(1)由两个三角形为等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根据“SAS”可证得△EAB≌△CAD,即可得出结论;
(1)根据(1)中结论和等腰直角三角形的性质得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后证得EF=FD,BE=CD,等量代换即可得出结论.
【详解】
解:(1)CD=BE,理由如下:
∵△ABC和△ADE为等腰三角形,
∴AB=AC,AD=AE,
∵∠EAD=∠BAC,
∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,
即∠EAB=∠CAD,
在△EAB与△CAD中,
∴△EAB≌△CAD,
∴BE=CD;
(1)∵∠BAC=90°,
∴△ABC和△ADE都是等腰直角三角形,
∴∠ABF=∠C=45°,
∵△EAB≌△CAD,
∴∠EBA=∠C,
∴∠EBA=45°,
∴∠EBF=90°,
在Rt△BFE中,BF1+BE1=EF1,
∵AF平分DE,AE=AD,
∴AF垂直平分DE,
∴EF=FD,
由(1)可知,BE=CD,
∴BF1+CD1=FD1.
【点睛】
本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,结合题意寻找出三角形全等的条件是解决此题的关键.
21、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.
【解析】
试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.
试题解析:(1)2÷0.04=50
(2)50×0.32=16 14÷50=0.28
(3)
(4)(0.32+0.16)×100%=48%
考点:频数分布直方图
22、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.
【解析】
(1)根据路程=速度时间,即可表示出AP,AQ的长度.
(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.
【详解】
(1)AP=2t,AQ=16﹣3t.
(2)∵∠PAQ=∠BAC,
∴当时,△APQ∽△ABC,即,解得
当时,△APQ∽△ACB,即,解得t=1.
∴运动时间为秒或1秒.
【点睛】
考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.
23、(1)见解析;(2)时,的值最大,
【解析】
(1)延长BA、CF交于点G,利用可证△AFG≌△DFC得出,,根据,可证出,得出,利用,,点是的中点,得出,,则有,可得出,得出,即可得出结论;
(2)设BE=x,则,,由勾股定理得出,,得出,求出,由二次函数的性质得出当x=1,即BE=1时,CE2-CF2有最大值,,由三角函数定义即可得出结果.
【详解】
解:(1)证明:如图,延长交的延长线于点,
∵为的中点,
∴.
在中,,
∴.
在和中,
∴,
∴,,
∵.
∴,
∴,
∵,,点是的中点,
∴,.
∴.
∴.
∴.
在中,,
又∵,
∴.
∴
(2)设,则,
∵,
∴,
在中,,
在中,,
∵,
∴,
∴,
∴当,即时,的值最大,
∴.
在中,
【点睛】
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、等腰三角形的判定与性质等知识;证明三角形全等和等腰三角形是解题的关键.
24、(1)150,(1)证明见解析(3)
【解析】
(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
(1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
试题解析:
【详解】
解:(1)∵△ABP≌△ACP′,
∴AP=AP′,
由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
∴△PAP′为等边三角形,
∴∠APP′=60°,
∵∠PAC+∠PCA=×60° =30°,
∴∠APC=150°,
∴∠P′PC=90°,
∴PP′1+PC1=P′C1,
∴PA1+PC1=PB1,
故答案为150,PA1+PC1=PB1;
(1)如图,作°,使,连接,.过点A作AD⊥于D点.
∵°,
即,
∴.
∵AB=AC,,
∴.
∴,°.
∵AD⊥,
∴°.
∴在Rt中,.
∴.
∵°,
∴°.
∴°.
∴在Rt中,.
∴;
(3)如图1,与(1)的方法类似,
作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
作AD⊥PP′于D,
由旋转变换的性质可知,∠PAP′=α,P′C=PB,
∴∠APP′=90°-,
∵∠PAC+∠PCA=,
∴∠APC=180°-,
∴∠P′PC=(180°-)-(90°-)=90°,
∴PP′1+PC1=P′C1,
∵∠APP′=90°-,
∴PD=PA•cos(90°-)=PA•sin,
∴PP′=1PA•sin,
∴4PA1sin1+PC1=PB1,
故答案为4PA1sin1+PC1=PB1.
【点睛】
本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
2024年广东省东莞市光明中学中考二模数学试题(原卷版+解析版): 这是一份2024年广东省东莞市光明中学中考二模数学试题(原卷版+解析版),文件包含2024年广东省东莞市光明中学中考二模数学试题原卷版docx、2024年广东省东莞市光明中学中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
2024年广东省东莞市光明中学中考二模数学试题(无答案): 这是一份2024年广东省东莞市光明中学中考二模数学试题(无答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省东莞市光明中学中考一模数学试题(原卷版+解析版): 这是一份2024年广东省东莞市光明中学中考一模数学试题(原卷版+解析版),文件包含2024年广东省东莞市光明中学中考一模数学试题原卷版docx、2024年广东省东莞市光明中学中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。