


广东省广州黄埔区五校联考2022年中考联考数学试题含解析
展开
这是一份广东省广州黄埔区五校联考2022年中考联考数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的正方体的展开图是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为( )
A.1 B.﹣1 C.±1 D.0
2.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()
A. B. C. D.
3.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )
A. cm B.3cm C.4cm D.4cm
4.若x=-2 是关于x的一元二次方程x2-ax+a2=0的一个根,则a的值为( )
A.1或4 B.-1或-4 C.-1或4 D.1或-4
5.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是 ( )
A. B.
C. D.
6.如图所示的正方体的展开图是( )
A. B. C. D.
7.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
A. B. C. D.
8.如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从
点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为
A. B. C. D.
9.对于任意实数k,关于x的方程的根的情况为
A.有两个相等的实数根 B.没有实数根
C.有两个不相等的实数根 D.无法确定
10. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B,点 B 的坐标为(﹣,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.
12.若,,则代数式的值为__________.
13.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.
14.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形.
15.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .
16.如图,在四边形ABCD中,AD∥BC,AB=CD且AB与CD不平行,AD=2,∠BCD=60°,对角线CA平分∠BCD,E,F分别是底边AD,BC的中点,连接EF,点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为__.
三、解答题(共8题,共72分)
17.(8分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
(1)把△ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 .
18.(8分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象.
(1)求y与x的函数关系式;
(2)直接写出自变量x的取值范围.
19.(8分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
若AC=OD,求a、b的值;若BC∥AE,求BC的长.
20.(8分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程两个根均为正整数,求负整数m的值.
21.(8分)如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.
(1)求证:△GBE∽△GEF.
(2)设AG=x,GF=y,求Y关于X的函数表达式,并写出自变量取值范围.
(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.
22.(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:
血型
A
B
AB
O
人数
10
5
(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:
从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?
23.(12分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:
(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.
(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)
24.如图,正方形OABC的面积为9,点O为坐标原点,点A在x轴上,点C上y轴上,点B在反比例函数y=(k>0,x>0)的图象上,点E从原点O出发,以每秒1个单位长度的速度向x轴正方向运动,过点E作x的垂线,交反比例函数y=(k>0,x>0)的图象于点P,过点P作PF⊥y轴于点F;记矩形OEPF和正方形OABC不重合部分的面积为S,点E的运动时间为t秒.
(1)求该反比例函数的解析式.
(2)求S与t的函数关系式;并求当S=时,对应的t值.
(3)在点E的运动过程中,是否存在一个t值,使△FBO为等腰三角形?若有,有几个,写出t值.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
【详解】
解:把x=0代入方程得:a2﹣1=0,
解得:a=±1,
∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
∴a﹣1≠0,
即a≠1,
∴a的值是﹣1.
故选:B.
【点睛】
本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.
2、B
【解析】
y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;
y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;
y=−的图象在二、四象限,故选项C错误;
y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;
故选B.
3、C
【解析】
利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.
【详解】
L==4π(cm);
圆锥的底面半径为4π÷2π=2(cm),
∴这个圆锥形筒的高为(cm).
故选C.
【点睛】
此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.
4、B
【解析】
试题分析:把x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0
即:4+5a+a2=0
解得:a=-1或-4,
故答案选B.
考点:一元二次方程的解;一元二次方程的解法.
5、D
【解析】
在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.
【详解】
在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1), 由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.
【点睛】
本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.
6、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
7、D
【解析】
由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
【详解】
解:设每头牛值金x两,每只羊值金y两,
由5头牛、2只羊,值金10两可得:5x+2y=10,
由2头牛、5只羊,值金8两可得2x+5y=8,
则7头牛、7只羊,值金18两,据此可知7x+7y=18,
所以方程组错误,
故选:D.
【点睛】
本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
8、B
【解析】
分析:分析y随x的变化而变化的趋势,应用排它法求解,而不一定要通过求解析式来解决:
∵等边三角形ABC的边长为3,N为AC的三等分点,
∴AN=1。∴当点M位于点A处时,x=0,y=1。
①当动点M从A点出发到AM=的过程中,y随x的增大而减小,故排除D;
②当动点M到达C点时,x=6,y=3﹣1=2,即此时y的值与点M在点A处时的值不相等,故排除A、C。
故选B。
9、C
【解析】
判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
∵a=1,b=,c=,
∴.
∴此方程有两个不相等的实数根.故选C.
10、C
【解析】
分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.
【详解】
(1)∵△=(m+3)2﹣4(m+2)
=(m+1)2
∴无论m取何值,(m+1)2恒大于等于1
∴原方程总有两个实数根
(2)原方程可化为:(x-1)(x-m-2)=1
∴x1=1, x2=m+2
∵方程两个根均为正整数,且m为负整数
∴m=-1.
【点睛】
本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.
21、(1)见解析;(2)y=4﹣x+(0≤x≤3);(3)当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【解析】
(1)先判断出△BEF'≌△CEF,得出BF'=CF,EF'=EF,进而得出∠BGE=∠EGF,即可得出结论;
(2)先判断出△BEG∽△CFE进而得出CF=
,即可得出结论;
(3)分两种情况,①△AGQ∽△CEP时,判断出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE时,判断出EG∥AC,进而得出△BEG∽△BCA即可得出BG,即可得出结论.
【详解】
(1)如图1,延长FE交AB的延长线于F',
∵点E是BC的中点,
∴BE=CE=2,
∵四边形ABCD是正方形,
∴AB∥CD,
∴∠F'=∠CFE,
在△BEF'和△CEF中,
,
∴△BEF'≌△CEF,
∴BF'=CF,EF'=EF,
∵∠GEF=90°,
∴GF'=GF,
∴∠BGE=∠EGF,
∵∠GBE=∠GEF=90°,
∴△GBE∽△GEF;
(2)∵∠FEG=90°,
∴∠BEG+∠CEF=90°,
∵∠BEG+∠BGE=90°,
∴∠BGE=∠CEF,
∵∠EBG=∠C=90°,
∴△BEG∽△CFE,
∴,
由(1)知,BE=CE=2,
∵AG=x,
∴BG=4﹣x,
∴,
∴CF=,
由(1)知,BF'=CF=,
由(1)知,GF'=GF=y,
∴y=GF'=BG+BF'=4﹣x+
当CF=4时,即:=4,
∴x=3,(0≤x≤3),
即:y关于x的函数表达式为y=4﹣x+(0≤x≤3);
(3)∵AC是正方形ABCD的对角线,
∴∠BAC=∠BCA=45°,
∵△AGQ与△CEP相似,
∴①△AGQ∽△CEP,
∴∠AGQ=∠CEP,
由(2)知,∠CEP=∠BGE,
∴∠AGQ=∠BGE,
由(1)知,∠BGE=∠FGE,
∴∠AGQ=∠BGQ=∠FGE,
∴∠AGQ+∠BGQ+∠FGE=180°,
∴∠BGE=60°,
∴∠BEG=30°,
在Rt△BEG中,BE=2,
∴BG=,
∴AG=AB﹣BG=4﹣,
②△AGQ∽△CPE,
∴∠AQG=∠CEP,
∵∠CEP=∠BGE=∠FGE,
∴∠AQG=∠FGE,
∴EG∥AC,
∴△BEG∽△BCA,
∴,
∴,
∴BG=2,
∴AG=AB﹣BG=2,
即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.
【点睛】
本题考核知识点:相似三角形综合. 解题关键点:熟记相似三角形的判定和性质.
22、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.
【解析】
【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;
(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;
(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.
【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),
所以m=×100=20,
故答案为50,20;
(2)O型献血的人数为46%×50=23(人),
A型献血的人数为50﹣10﹣5﹣23=12(人),
补全表格中的数据如下:
血型
A
B
AB
O
人数
12
10
5
23
故答案为12,23;
(3)从献血者人群中任抽取一人,其血型是A型的概率=,
3000×=720,
估计这3000人中大约有720人是A型血.
【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
23、(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为.
【解析】
(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.
【详解】
(1)被调查的总人数为25÷50%=50人;
则步行的人数为50﹣25﹣15=10人;
如图所示条形图,
“骑车”部分所对应的圆心角的度数=×360°=108°;
(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,
则有AB、AC、AD、BC、BD、CD这6种等可能的情况,
其中2人都是“喜欢乘车”的学生有3种结果,
所以2人都是“喜欢乘车”的学生的概率为.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)y=(x>0);(2)S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);当S=时,对应的t值为或6;(3)当t=或或3时,使△FBO为等腰三角形.
【解析】
(1)由正方形OABC的面积为9,可得点B的坐标为:(3,3),继而可求得该反比例函数的解析式.
(2)由题意得P(t,),然后分别从当点P1在点B的左侧时,S=t•(-3)=-3t+9与当点P2在点B的右侧时,则S=(t-3)•=9-去分析求解即可求得答案;
(3)分别从OB=BF,OB=OF,OF=BF去分析求解即可求得答案.
【详解】
解:(1)∵正方形OABC的面积为9,
∴点B的坐标为:(3,3),
∵点B在反比例函数y=(k>0,x>0)的图象上,
∴3=,
即k=9,
∴该反比例函数的解析式为:y= y=(x>0);
(2)根据题意得:P(t,),
分两种情况:①当点P1在点B的左侧时,S=t•(﹣3)=﹣3t+9(0≤t≤3);
若S=,
则﹣3t+9=,
解得:t=;
②当点P2在点B的右侧时,则S=(t﹣3)•=9﹣;
若S=,则9﹣=,
解得:t=6;
∴S与t的函数关系式为:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);
当S=时,对应的t值为或6;
(3)存在.
若OB=BF=3,此时CF=BC=3,
∴OF=6,
∴6=,
解得:t=;
若OB=OF=3,则3=,
解得:t= ;
若BF=OF,此时点F与C重合,t=3;
∴当t=或或3时,使△FBO为等腰三角形.
【点睛】
此题考查反比例函数的性质、待定系数法求函数的解析式以及等腰三角形的性质.此题难度较大,解题关键是注意掌握数形结合思想、分类讨论思想与方程思想的应用.
相关试卷
这是一份山东省枣庄薛城区五校联考2022年中考联考数学试题含解析,共21页。
这是一份2022年广东省汕头潮阳区五校联考中考一模数学试题含解析,共19页。试卷主要包含了下列运算正确的是,下列方程中,两根之和为2的是等内容,欢迎下载使用。
这是一份2022年广东省佛山顺德区五校联考中考一模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,,则的值是等内容,欢迎下载使用。
