搜索
    上传资料 赚现金
    英语朗读宝

    福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析

    福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析第1页
    福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析第2页
    福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析

    展开

    这是一份福建省长泰一中学、华安一中学、龙海二中学2022年中考数学适应性模拟试题含解析,共21页。试卷主要包含了分式方程的解为,若分式的值为零,则x的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )

    A. B. C. D.
    2.下列一元二次方程中,有两个不相等实数根的是(  )
    A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0
    3.计算(-ab2)3÷(-ab)2的结果是(  )
    A.ab4 B.-ab4 C.ab3 D.-ab3
    4.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是( )
    A.在⊙O内 B.在⊙O上
    C.在⊙O外 D.不能确定
    5.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是(  )

    A. B. C.1 D.
    6.分式方程的解为( )
    A.x=-2 B.x=-3 C.x=2 D.x=3
    7.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )

    A.1 B. C. D.
    8.某校九年级(1)班全体学生实验考试的成绩统计如下表:
    成绩(分)
    24
    25
    26
    27
    28
    29
    30
    人数(人)
    2
    5
    6
    6
    8
    7
    6
    根据上表中的信息判断,下列结论中错误的是(  )
    A.该班一共有40名同学
    B.该班考试成绩的众数是28分
    C.该班考试成绩的中位数是28分
    D.该班考试成绩的平均数是28分
    9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是(  )

    A.甲超市的利润逐月减少
    B.乙超市的利润在1月至4月间逐月增加
    C.8月份两家超市利润相同
    D.乙超市在9月份的利润必超过甲超市
    10.若分式的值为零,则x的值是( )
    A.1 B. C. D.2
    二、填空题(共7小题,每小题3分,满分21分)
    11.因式分解:y3﹣16y=_____.
    12.分解因式:a2-2ab+b2-1=______.
    13.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
    14.若正n边形的内角为,则边数n为_____________.
    15.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.

    16.如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_____________.
    17.如图,已知,,则________.

    三、解答题(共7小题,满分69分)
    18.(10分)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC、连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.
    如图1,当t=3时,求DF的长.如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值.连结AD,当AD将△DEF分成的两部分的面积之比为1:2时,求相应的t的值.
    19.(5分)某校对学生就“食品安全知识”进行了抽样调查(每人选填一类),绘制了如图所示的两幅统计图(不完整)。请根据图中信息,解答下列问题:

    (1)根据图中数据,求出扇形统计图中的值,并补全条形统计图。
    (2)该校共有学生900人,估计该校学生对“食品安全知识”非常了解的人数.
    20.(8分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.

    21.(10分)我们知道中,如果,,那么当时,的面积最大为6;
    (1)若四边形中,,且,直接写出满足什么位置关系时四边形面积最大?并直接写出最大面积.
    (2)已知四边形中,,求为多少时,四边形面积最大?并求出最大面积是多少?
    22.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.

    (1)若点的横坐标为,求的面积;(用含的式子表示)
    (2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
    23.(12分)货车行驶25与轿车行驶35所用时间相同.已知轿车每小时比货车多行驶20,求货车行驶的速度.
    24.(14分)直角三角形ABC中,,D是斜边BC上一点,且,过点C作,交AD的延长线于点E,交AB延长线于点F.
    求证:;
    若,,过点B作于点G,连接依题意补全图形,并求四边形ABGD的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
    【详解】
    ∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
    ∴AE=AB,∠E=∠B=90°,
    又∵四边形ABCD为矩形,
    ∴AB=CD,
    ∴AE=DC,
    而∠AFE=∠DFC,
    ∵在△AEF与△CDF中,

    ∴△AEF≌△CDF(AAS),
    ∴EF=DF;
    ∵四边形ABCD为矩形,
    ∴AD=BC=6,CD=AB=4,
    ∵Rt△AEF≌Rt△CDF,
    ∴FC=FA,
    设FA=x,则FC=x,FD=6-x,
    在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
    则FD=6-x=.
    故选B.
    【点睛】
    考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
    2、B
    【解析】
    分析:根据一元二次方程根的判别式判断即可.
    详解:A、x2+6x+9=0.
    △=62-4×9=36-36=0,
    方程有两个相等实数根;
    B、x2=x.
    x2-x=0.
    △=(-1)2-4×1×0=1>0.
    方程有两个不相等实数根;
    C、x2+3=2x.
    x2-2x+3=0.
    △=(-2)2-4×1×3=-8<0,
    方程无实根;
    D、(x-1)2+1=0.
    (x-1)2=-1,
    则方程无实根;
    故选B.
    点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.
    3、B
    【解析】
    根据积的乘方的运算法则,先分别计算积的乘方,然后再根据单项式除法法则进行计算即可得,
    (-ab2)3÷(-ab)2
    =-a3b6÷a2b2
    =-ab4,
    故选B.
    4、B.
    【解析】
    试题解析:∵OP=5,
    ∴根据点到圆心的距离等于半径,则知点在圆上.
    故选B.
    考点:1.点与圆的位置关系;2.坐标与图形性质.
    5、D
    【解析】
    过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相 似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.
    【详解】
    解:如图:
    解:过F作FH⊥AE于H,四边形ABCD是矩形,
    AB=CD,AB∥CD,
    AE//CF, 四边形AECF是平行四边形,
    AF=CE,DE=BF,
    AF=3-DE,
    AE=,
    ∠FHA=∠D=∠DAF=,
    ∠AFH+∠HAF=∠DAE+∠FAH=90, ∠DAE=∠AFH,
    △ADE~△AFH,

    AE=AF,
    ,
    DE=,
    故选D.
    【点睛】
    本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.
    6、B
    【解析】
    解:去分母得:2x=x﹣3,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.
    7、D
    【解析】
    设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
    【详解】
    设AE=x,
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠D=90°,CD=AB,
    ∵AG平分∠BAD,
    ∴∠DAG=45°,
    ∴△ADG是等腰直角三角形,
    ∴DG=AD=1,
    ∴AG=AD=,
    同理:BE=AE=x, CD=AB=x,
    ∴CG=CD-DG=x -1,
    同理: CG=GF,
    ∴FG= ,
    ∴AE-GF=x-(x-)=.
    故选D.
    【点睛】
    本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
    8、D
    【解析】
    直接利用众数、中位数、平均数的求法分别分析得出答案.
    【详解】
    解:A、该班一共有2+5+6+6+8+7+6=40名同学,故此选项正确,不合题意;
    B、该班考试成绩的众数是28分,此选项正确,不合题意;
    C、该班考试成绩的中位数是:第20和21个数据的平均数,为28分,此选项正确,不合题
    意;
    D、该班考试成绩的平均数是:(24×2+25×5+26×6+27×6+28×8+29×7+30×6)÷40=27.45(分),
    故选项D错误,符合题意.
    故选D.
    【点睛】
    此题主要考查了众数、中位数、平均数的求法,正确把握相关定义是解题关键.
    9、D
    【解析】
    【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.
    【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;
    B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;
    C、8月份两家超市利润相同,此选项正确,不符合题意;
    D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,
    故选D.
    【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
    10、A
    【解析】
    试题解析:∵分式的值为零,
    ∴|x|﹣1=0,x+1≠0,
    解得:x=1.
    故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、y(y+4)(y﹣4)
    【解析】
    试题解析:原式


    故答案为
    点睛:提取公因式法和公式法相结合因式分解.
    12、 (a-b+1)(a-b-1)
    【解析】
    当被分解的式子是四项时,应考虑运用分组分解法进行分解,前三项a2-2ab+b2可组成完全平方公式,再和最后一项用平方差公式分解.
    【详解】
    a2-2ab+b2-1,
    =(a-b)2-1,
    =(a-b+1)(a-b-1).
    【点睛】
    本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前三项可组成完全平方公式,可把前三项分为一组,分解一定要彻底.
    13、21
    【解析】
    每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元.
    14、9
    【解析】
    分析:
    根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
    详解:
    由题意可得:140n=180(n-2),
    解得:n=9.
    故答案为:9.
    点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
    15、
    【解析】
    由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
    【详解】
    ∵四边形ABCD、CEFG均为正方形,
    ∴CD=AD=3,CG=CE=5,
    ∴DG=2,
    在Rt△DGF中, DF==,
    ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
    ∴∠FDG=∠IDA.
    又∵∠DAI=∠DGF,
    ∴△DGF∽△DAI,
    ∴,即,解得:DI=,
    ∴矩形DFHI的面积是=DF•DI=,
    故答案为:.
    【点睛】
    本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.
    16、
    【解析】
    分析:
    由已知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.
    详解:
    ∵反比例函数的图象经过点A(2,y1)与B(3,y2),
    ∴2y1=k,3y2=k,
    ∴2y1=3y2,
    ∴.
    故答案为:.
    点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.
    17、65°
    【解析】
    根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.
    【详解】

    ∵m∥n,∠1=105°,
    ∴∠3=180°−∠1=180°−105°=75°
    ∴∠α=∠2−∠3=140°−75°=65°
    故答案为:65°.
    【点睛】
    此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.

    三、解答题(共7小题,满分69分)
    18、(1)3;(2)∠DEF的大小不变,tan∠DEF=;(3)或.
    【解析】
    (1)当t=3时,点E为AB的中点,
    ∵A(8,0),C(0,6),
    ∴OA=8,OC=6,
    ∵点D为OB的中点,
    ∴DE∥OA,DE=OA=4,
    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴DE⊥AB,
    ∴∠OAB=∠DEA=90°,
    又∵DF⊥DE,
    ∴∠EDF=90°,
    ∴四边形DFAE是矩形,
    ∴DF=AE=3;
    (2)∠DEF的大小不变;理由如下:
    作DM⊥OA于M,DN⊥AB于N,如图2所示:

    ∵四边形OABC是矩形,
    ∴OA⊥AB,
    ∴四边形DMAN是矩形,
    ∴∠MDN=90°,DM∥AB,DN∥OA,
    ∴, ,
    ∵点D为OB的中点,
    ∴M、N分别是OA、AB的中点,
    ∴DM=AB=3,DN=OA=4,
    ∵∠EDF=90°,
    ∴∠FDM=∠EDN,
    又∵∠DMF=∠DNE=90°,
    ∴△DMF∽△DNE,
    ∴,
    ∵∠EDF=90°,
    ∴tan∠DEF=;
    (3)作DM⊥OA于M,DN⊥AB于N,
    若AD将△DEF的面积分成1:2的两部分,
    设AD交EF于点G,则点G为EF的三等分点;
    ①当点E到达中点之前时,如图3所示,NE=3﹣t,

    由△DMF∽△DNE得:MF=(3﹣t),
    ∴AF=4+MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    设直线AD的解析式为y=kx+b,
    把A(8,0),D(4,3)代入得: ,
    解得: ,
    ∴直线AD的解析式为y=﹣x+6,
    把G(,)代入得:t=;
    ②当点E越过中点之后,如图4所示,NE=t﹣3,

    由△DMF∽△DNE得:MF=(t﹣3),
    ∴AF=4﹣MF=﹣t+,
    ∵点G为EF的三等分点,
    ∴G(,),
    代入直线AD的解析式y=﹣x+6得:t=;
    综上所述,当AD将△DEF分成的两部分的面积之比为1:2时,t的值为或.
    考点:四边形综合题.
    19、(1),补全条形统计图见解析;(2)该校学生对“食品安全知识”非常了解的人数为135人。
    【解析】
    试题分析:
    (1)由统计图中的信息可知,B组学生有32人,占总数的40%,由此可得被抽查学生总人数为:32÷40%=80(人),结合C组学生有28人可得:m%=28÷80×100%=35%,由此可得m=35;由80-32-28-8=12(人)可知A组由12人,由此即可补全条形统计图了;
    (2)由(1)中计算可知,A组有12名学生,占总数的12÷80×100%=15%,结合全校总人数为900可得900×15%=135(人),即全校“非常了解”“食品安全知识”的有135人.
    试题解析:
    (1)由已知条件可得:被抽查学生总数为32÷40%=80(人),
    ∴m%=28÷80×100%=35%,
    ∴m=35,
    A组人数为:80-32-28-8=12(人),
    将图形统计图补充完整如下图所示:

    (2)由题意可得:900×(12÷80×100%)=900×15%=135(人).
    答:全校学生对“食品安全知识”非常了解的人数为135人.
    20、证明见解析.
    【解析】
    要证明BE=CE,只要证明△EAB≌△EDC即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题.
    【详解】
    证明:∵四边形ABCD是矩形,
    ∴AB=CD,∠BAD=∠CDA=90°,
    ∵△ADE是等边三角形,
    ∴AE=DE,∠EAD=∠EDA=60°,
    ∴∠EAD=∠EDC,
    在△EAB和△EDC中,

    ∴△EAB≌△EDC(SAS),
    ∴BE=CE.
    【点睛】
    本题考查矩形的性质、等边三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    21、 (1)当,时有最大值1;(2)当时,面积有最大值32.
    【解析】
    (1)由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,由此即可解决问题.
    (2)设BD=x,由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,构建二次函数,利用二次函数的性质即可解决问题.
    【详解】
    (1) 由题意当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,
    最大面积为×6×(16-6)=1.
    故当,时有最大值1;
    (2)当,时有最大值,
    设, 由题意:当AD∥BC,BD⊥AD时,四边形ABCD的面积最大,








    ∴抛物线开口向下
    ∴当 时,面积有最大值32.
    【点睛】
    本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.
    22、(1);(2)不能成为平行四边形,理由见解析
    【解析】
    (1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
    (2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
    【详解】
    解:(1)∵点在直线上,
    ∴.
    ∵点在的图像上,
    ∴,∴.
    设,
    则.
    ∵∴.
    记的面积为,



    (2)当点为中点时,其坐标为,
    ∴.
    ∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
    ∴,
    ∴,
    ∴与不能互相平分,
    ∴四边形不能成为平行四边形.
    【点睛】
    本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
    23、50千米/小时.
    【解析】
    根据题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出方程求解即可.
    【详解】
    解:设货车的速度为x千米/小时,依题意得:
    解:根据题意,得

    解得:x=50
    经检验x=50是原方程的解.
    答:货车的速度为50千米/小时.
    【点睛】
    本题考查了分式方程的应用,找出题中的等量关系,列出关系式是解题的关键.
    24、(1)证明见解析;(2)补图见解析;.
    【解析】
    根据等腰三角形的性质得到,等量代换得到,根据余角的性质即可得到结论;
    根据平行线的判定定理得到AD∥BG,推出四边形ABGD是平行四边形,得到平行四边形ABGD是菱形,设AB=BG=GD=AD=x,解直角三角形得到 ,过点B作 于H,根据平行四边形的面积公式即可得到结论.
    【详解】
    解:,








    补全图形,如图所示:

    ,,
    ,,
    ,,

    ,,且,



    四边形ABGD是平行四边形,

    平行四边形ABGD是菱形,
    设,



    过点B作于H,


    故答案为(1)证明见解析;(2)补图见解析;.
    【点睛】
    本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.

    相关试卷

    福建省长泰一中学、华安一中学、龙海二中学2023-2024学年九上数学期末考试试题含答案:

    这是一份福建省长泰一中学、华安一中学、龙海二中学2023-2024学年九上数学期末考试试题含答案,共7页。试卷主要包含了下列说法中正确的是,如果两个相似三角形的面积比是1等内容,欢迎下载使用。

    2023-2024学年福建省长泰一中学、华安一中学、龙海二中学数学八上期末复习检测试题含答案:

    这是一份2023-2024学年福建省长泰一中学、华安一中学、龙海二中学数学八上期末复习检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,将多项式分解因式,结果正确的是等内容,欢迎下载使用。

    福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析:

    这是一份福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析,共16页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map