|试卷下载
终身会员
搜索
    上传资料 赚现金
    福建省永春汤城中学2022年中考数学四模试卷含解析
    立即下载
    加入资料篮
    福建省永春汤城中学2022年中考数学四模试卷含解析01
    福建省永春汤城中学2022年中考数学四模试卷含解析02
    福建省永春汤城中学2022年中考数学四模试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省永春汤城中学2022年中考数学四模试卷含解析

    展开
    这是一份福建省永春汤城中学2022年中考数学四模试卷含解析,共19页。试卷主要包含了一、单选题等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为(  )

    A.13 B.15 C.17 D.19
    2.如图,△ABC纸片中,∠A=56,∠C=88°.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD.则∠BDE的度数为( )

    A.76° B.74° C.72° D.70°
    3.矩形具有而平行四边形不具有的性质是(  )
    A.对角相等 B.对角线互相平分
    C.对角线相等 D.对边相等
    4.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )
    A.﹣=10 B.﹣=10
    C.﹣=10 D. +=10
    5.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC的长为(  )

    A.2 B.4 C.6 D.8
    6.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是(  )

    A.(3,1) B.(2,2) C.(1,3) D.(3,0)
    7.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为(  )
    A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人
    8.若代数式,,则M与N的大小关系是( )
    A. B. C. D.
    9.一、单选题
    点P(2,﹣1)关于原点对称的点P′的坐标是(  )
    A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)
    10.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=(  )

    A.1 B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在平面直角坐标系xOy中,点A、B为反比例函数 (x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将 (x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.
    12.抛物线 的顶点坐标是________.
    13.正多边形的一个外角是,则这个多边形的内角和的度数是___________________.
    14.圆锥的底面半径为4cm,高为5cm,则它的表面积为______ cm1.
    15.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。问牛羊各值金几何?”译文:今有牛5头,羊2头,共值金10两,牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金两、两,依题意,可列出方程为___________________ .
    16.若正六边形的边长为2,则此正六边形的边心距为______.
    三、解答题(共8题,共72分)
    17.(8分)计算:|﹣1|﹣2sin45°+﹣
    18.(8分)已知,四边形ABCD中,E是对角线AC上一点,DE=EC,以AE为直径的⊙O与边CD相切于点D,点B在⊙O上,连接OB.求证:DE=OE;若CD∥AB,求证:BC是⊙O的切线;在(2)的条件下,求证:四边形ABCD是菱形.

    19.(8分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.

    (1)填空:∠AOB= °,用m表示点A′的坐标:A′( , );
    (2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
    (3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
    ①求a,b,m满足的关系式;
    ②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.
    20.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.

    21.(8分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.
    如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).

    (1)当x为何值时,OP∥AC;
    (2)求y与x之间的函数关系式,并确定自变量x的取值范围;
    (3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)
    22.(10分)阅读材料:已知点和直线,则点P到直线的距离d可用公式计算.
    例如:求点到直线的距离. 
    解:因为直线可变形为,其中,所以点到直线的距离为:.根据以上材料,求:点到直线的距离,并说明点P与直线的位置关系;已知直线与平行,求这两条直线的距离.
    23.(12分)计算:; 解方程:
    24.4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:
    (1)初三•二班跑得最快的是第   接力棒的运动员;
    (2)发令后经过多长时间两班运动员第一次并列?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    ∵DE垂直平分AC,
    ∴AD=CD,AC=2EC=8,
    ∵C△ABC=AC+BC+AB=23,
    ∴AB+BC=23-8=15,
    ∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.
    故选B.
    2、B
    【解析】
    直接利用三角形内角和定理得出∠ABC的度数,再利用翻折变换的性质得出∠BDE的度数.
    【详解】
    解:∵∠A=56°,∠C=88°,
    ∴∠ABC=180°-56°-88°=36°,
    ∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,
    ∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
    ∴∠BDE=180°-18°-88°=74°.
    故选:B.
    【点睛】
    此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键.
    3、C
    【解析】
    试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
    解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
    平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
    ∴矩形具有而平行四边形不一定具有的性质是对角线相等,
    故选C.
    4、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    5、B
    【解析】
    证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.
    【详解】
    ∵∠A=∠A,∠ADC=∠ACB,
    ∴△ADC∽△ACB,
    ∴,
    ∴AC2=AD•AB=2×8=16,
    ∵AC>0,
    ∴AC=4,
    故选B.
    【点睛】
    本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.
    6、B
    【解析】
    作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.
    【详解】
    解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).

    故选:B.
    【点睛】
    此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键. 图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    7、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    用科学记数法表示16000,应记作1.6×104,
    故选A.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    8、C
    【解析】
    ∵,
    ∴,
    ∴.
    故选C.
    9、A
    【解析】
    根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.
    【详解】
    解:点P(2,-1)关于原点对称的点的坐标是(-2,1).
    故选A.
    【点睛】
    本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
    10、D
    【解析】
    解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.
    点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(1,-4)
    【解析】
    利用旋转的性质即可解决问题.
    【详解】
    如图,

    由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);
    所以,B′(1,-4);
    故答案为(1,-4).
    【点睛】
    本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.
    12、(0,-1)
    【解析】
    ∵a=2,b=0,c=-1,∴-=0, ,
    ∴抛物线的顶点坐标是(0,-1),
    故答案为(0,-1).
    13、540°
    【解析】
    根据多边形的外角和为360°,因此可以求出多边形的边数为360°÷72°=5,根据多边形的内角和公式(n-2)·180°,可得(5-2)×180°=540°.
    考点:多边形的内角和与外角和
    14、
    【解析】
    利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=π×底面半径的平方+底面周长×母线长÷1.
    【详解】
    底面半径为4cm,则底面周长=8πcm,底面面积=16πcm1;
    由勾股定理得,母线长=,
    圆锥的侧面面积,
    ∴它的表面积=(16π+4 )cm1= cm1 ,
    故答案为:.
    【点睛】
    本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
    15、
    【解析】
    【分析】牛、羊每头各值金两、两,根据等量关系:“牛5头,羊2头,共值金10两”,“牛2头,羊5头,共值金8两”列方程组即可.
    【详解】牛、羊每头各值金两、两,由题意得:

    故答案为:.
    【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是关键.
    16、.
    【解析】
    连接OA、OB,根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.
    【详解】
    连接OA、OB、OC、OD、OE、OF,

    ∵正六边形ABCDEF,
    ∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,
    ∴△AOB是等边三角形,
    ∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,
    在△OAM中,由勾股定理得:OM=.

    三、解答题(共8题,共72分)
    17、﹣1
    【解析】
    直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.
    【详解】
    原式=(﹣1)﹣2×+2﹣4
    =﹣1﹣+2﹣4
    =﹣1.
    【点睛】
    此题主要考查了实数运算,正确化简各数是解题关键.
    18、(1)证明见解析;(2)证明见解析;(3)证明见解析.
    【解析】
    (1)先判断出∠2+∠3=90°,再判断出∠1=∠2即可得出结论;
    (2)根据等腰三角形的性质得到∠3=∠COD=∠DEO=60°,根据平行线的性质得到∠4=∠1,根据全等三角形的性质得到∠CBO=∠CDO=90°,于是得到结论;
    (3)先判断出△ABO≌△CDE得出AB=CD,即可判断出四边形ABCD是平行四边形,最后判断出CD=AD即可.
    【详解】
    (1)如图,连接OD,

    ∵CD是⊙O的切线,
    ∴OD⊥CD,
    ∴∠2+∠3=∠1+∠COD=90°,
    ∵DE=EC,
    ∴∠1=∠2,
    ∴∠3=∠COD,
    ∴DE=OE;
    (2)∵OD=OE,
    ∴OD=DE=OE,
    ∴∠3=∠COD=∠DEO=60°,
    ∴∠2=∠1=30°,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴∠BOC=∠DOC=60°,
    在△CDO与△CBO中,,
    ∴△CDO≌△CBO(SAS),
    ∴∠CBO=∠CDO=90°,
    ∴OB⊥BC,
    ∴BC是⊙O的切线;
    (3)∵OA=OB=OE,OE=DE=EC,
    ∴OA=OB=DE=EC,
    ∵AB∥CD,
    ∴∠4=∠1,
    ∴∠1=∠2=∠4=∠OBA=30°,
    ∴△ABO≌△CDE(AAS),
    ∴AB=CD,
    ∴四边形ABCD是平行四边形,
    ∴∠DAE=∠DOE=30°,
    ∴∠1=∠DAE,
    ∴CD=AD,
    ∴▱ABCD是菱形.
    【点睛】
    此题主要考查了切线的性质,同角的余角相等,等腰三角形的性质,平行四边形的判定和性质,菱形的判定,判断出△ABO≌△CDE是解本题的关键.
    19、(1)45;(m,﹣m);(2)相似;(3)①;②.
    【解析】
    试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;
    (2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;
    (3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;
    ②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口最小,分两种情况考虑:若抛物线过点C(3m,0),此时MN的最大值为10,求出此时a的值;若抛物线过点A(2m,2m),求出此时a的值,即可确定出抛物线与四边形ABCD有公共点时a的范围.
    试题解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为45;m,﹣m;
    (2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为,∵抛物线过点E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;
    (3)①当点E与点O重合时,E(0,0),∵抛物线过点E,A,∴,整理得:,即;
    ②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;
    若抛物线过点A(2m,2m),则,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为.
    考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.
    20、(1)详见解析;(2)1+
    【解析】
    (1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
    【详解】
    (1)证明:连结.如图,
    与相切于点D,


    是的直径,





    (2)解:在中,
    .

    【点睛】
    此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
    21、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【解析】
    (1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.
    (2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.
    (3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.
    【详解】
    解:(1)∵Rt△EFG∽Rt△ABC
    ∴,即,
    ∴FG==3cm
    ∵当P为FG的中点时,OP∥EG,EG∥AC
    ∴OP∥AC
    ∴x==×3=1.5(s)
    ∴当x为1.5s时,OP∥AC.
    (2)在Rt△EFG中,由勾股定理得EF=5cm
    ∵EG∥AH
    ∴△EFG∽△AFH
    ∴,
    ∴AH=(x+5),FH=(x+5)
    过点O作OD⊥FP,垂足为D

    ∵点O为EF中点
    ∴OD=EG=2cm
    ∵FP=3﹣x
    ∴S四边形OAHP=S△AFH﹣S△OFP
    =•AH•FH﹣•OD•FP
    =•(x+5)•(x+5)﹣×2×(3﹣x)
    =x2+x+3(0<x<3).
    (3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1
    则S四边形OAHP=×S△ABC
    ∴x2+x+3=××6×8
    ∴6x2+85x﹣250=0
    解得x1=,x2=﹣(舍去)
    ∵0<x<3
    ∴当x=(s)时,四边形OAHP面积与△ABC面积的比为13:1.
    【点睛】
    本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.
    22、(1)点P在直线上,说明见解析;(2).
    【解析】
    解:(1) 求:(1)直线可变为,
    说明点P在直线上;
    (2)在直线上取一点(0,1),直线可变为
    则,
    ∴这两条平行线的距离为.
    23、(1)2 (2)
    【解析】
    (1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
    【详解】
    (1)原式==2;
    (2)



    【点睛】
    本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.
    24、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.
    【解析】
    (1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.
    【详解】
    (1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;
    (2)设在图象相交的部分,设一班的直线为y1=kx+b,把点(28,200),(40,300)代入得:

    解得:k=,b=﹣,
    即y1=x﹣,
    二班的为y2=k′x+b′,把点(25,200),(41,300),代入得:

    解得:k′=,b′=,
    即y2=x+
    联立方程组,
    解得:,
    所以发令后第37秒两班运动员在275米处第一次并列.
    【点睛】
    本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.

    相关试卷

    福建省泉州市永春县永春华侨中学、汤城中学2023-2024学年九年级上学期月考数学试题: 这是一份福建省泉州市永春县永春华侨中学、汤城中学2023-2024学年九年级上学期月考数学试题,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年福建省永春汤城中学七下数学期末达标检测模拟试题含答案: 这是一份2022-2023学年福建省永春汤城中学七下数学期末达标检测模拟试题含答案,共5页。试卷主要包含了答题时请按要求用笔,的算术平方根是,用配方法解方程配方正确的是等内容,欢迎下载使用。

    2022年福建省晋江市永春县市级名校中考数学四模试卷含解析: 这是一份2022年福建省晋江市永春县市级名校中考数学四模试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,如果将直线l1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map