福建省永春三中学片区2021-2022学年中考押题数学预测卷含解析
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
2.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
A.3个B.2个C.1个D.0个
3.有下列四种说法:
①半径确定了,圆就确定了;②直径是弦;
③弦是直径;④半圆是弧,但弧不一定是半圆.
其中,错误的说法有( )
A.1种B.2种C.3种D.4种
4.二次函数的图象如图所示,则下列各式中错误的是( )
A.abc>0B.a+b+c>0C.a+c>bD.2a+b=0
5.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( )
A.1对B.2对C.3对D.4对
6.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
A.B.C.D.
7.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为( )
A.5cmB.12cmC.16cmD.20cm
8.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A.B.
C.D.
9.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.中位数B.众数C.平均数D.方差
10.关于的一元二次方程有两个不相等的实数根,则实数的取值范围是
A.B.C.D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.
12.若-2amb4与5a2bn+7是同类项,则m+n= .
13.把小圆形场地的半径增加5米得到大圆形场地,此时大圆形场地的面积是小圆形场地的4倍,设小圆形场地的半径为x米,若要求出未知数x,则应列出方程 (列出方程,不要求解方程).
14.已知线段AB=2cm,点C在线段AB上,且AC2=BC·AB,则AC的长___________cm.
15.将一副三角尺如图所示叠放在一起,则的值是 .
16.已知函数是关于的二次函数,则__________.
三、解答题(共8题,共72分)
17.(8分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
18.(8分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
19.(8分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.
20.(8分)已知函数的图象与函数的图象交于点.
(1)若,求的值和点P的坐标;
(2)当时,结合函数图象,直接写出实数的取值范围.
21.(8分)如图,两座建筑物的水平距离为.从点测得点的仰角为53° ,从点测得点的俯角为37° ,求两座建筑物的高度(参考数据:
22.(10分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.
该班共有 名留守学生,B类型留守学生所在扇形的圆心角的度数为 ;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?
23.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?
24.如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.
(1)求m的值和反比例函数的表达式;
(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
2、A
【解析】
3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
故选A.
3、B
【解析】
根据弦的定义、弧的定义、以及确定圆的条件即可解决.
【详解】
解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;
直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;
弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;
④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.
其中错误说法的是①③两个.
故选B.
【点睛】
本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆.
4、B
【解析】
根据二次函数的图象与性质逐一判断即可.
【详解】
解:由图象可知抛物线开口向上,
∴,
∵对称轴为,
∴,
∴,
∴,故D正确,
又∵抛物线与y轴交于y轴的负半轴,
∴,
∴,故A正确;
当x=1时,,
即,故B错误;
当x=-1时,
即,
∴,故C正确,
故答案为:B.
【点睛】
本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质.
5、C
【解析】
∵∠ACB=90°,CD⊥AB,
∴△ABC∽△ACD,
△ACD∽CBD,
△ABC∽CBD,
所以有三对相似三角形.
故选C.
6、C
【解析】
分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,也是中心对称图形,故本选项错误;
C、不是轴对称图形,也不是中心对称图形,故本选项正确;
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选C.
7、D
【解析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.
【详解】
延长AB、DC相交于F,则BFC构成直角三角形,
运用勾股定理得:
BC2=(15-3)2+(1-4)2=122+162=400,
所以BC=1.
则剪去的直角三角形的斜边长为1cm.
故选D.
【点睛】
本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.
8、A
【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
去括号得:2﹣2x<4
移项得:2x>﹣2,
系数化为1得:x>﹣1,
故选A.
“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
9、A
【解析】
根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.
【详解】
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.
故选A.
点睛:本题主要考查了中位数,关键是掌握中位数定义.
10、A
【解析】
根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.
【详解】
∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,
∴m<,
故选A.
【点睛】
本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式△的关系,即:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、2.
【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.
【详解】
设第n层有an个三角形(n为正整数),
∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,
∴an=2(n﹣2)+2=2n﹣2.
∴当n=2029时,a2029=2×2029﹣2=2.
故答案为2.
【点睛】
本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.
12、-1.
【解析】
试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.
试题解析:由-2amb4与5a2bn+7是同类项,得
,
解得.
∴m+n=-1.
考点:同类项.
13、π(x+5)1=4πx1.
【解析】
根据等量关系“大圆的面积=4×小圆的面积”可以列出方程.
【详解】
解:设小圆的半径为x米,则大圆的半径为(x+5)米,
根据题意得:π(x+5)1=4πx1,
故答案为π(x+5)1=4πx1.
【点睛】
本题考查了由实际问题抽象出一元二次方程的知识,本题等量关系比较明显,容易列出.
14、
【解析】
设AC=x,则BC=2-x,根据AC2=BC·AB列方程求解即可.
【详解】
解:设AC=x,则BC=2-x,根据AC2=BC·AB可得x2=2(2-x),
解得:x=或(舍去).
故答案为.
【点睛】
本题考查了黄金分割的应用,关键是明确黄金分割所涉及的线段的比.
15、
【解析】
试题分析:∵∠BAC=∠ACD=90°,∴AB∥CD.
∴△ABE∽△DCE.∴.
∵在Rt△ACB中∠B=45°,∴AB=AC.
∵在RtACD中,∠D=30°,∴.
∴.
16、1
【解析】
根据一元二次方程的定义可得:,且,求解即可得出m的值.
【详解】
解:由题意得:,且,
解得:,且,
∴
故答案为:1.
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.
三、解答题(共8题,共72分)
17、(1) ,y=2x﹣1;(2).
【解析】
(1)利用待定系数法即可解答;
(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标
【详解】
解:(1)把点A(4,3)代入函数得:a=3×4=12,
∴.
∵A(4,3)
∴OA=1,
∵OA=OB,
∴OB=1,
∴点B的坐标为(0,﹣1)
把B(0,﹣1),A(4,3)代入y=kx+b得:
∴y=2x﹣1.
(2)作MD⊥y轴于点D.
∵点M在一次函数y=2x﹣1上,
∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)
∵MB=MC,
∴CD=BD
∴8-(2x-1)=2x-1+1
解得:x=
∴2x﹣1= ,
∴点M的坐标为 .
【点睛】
本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.
18、(1),;(2)证明见解析.
【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.
试题解析:(1)设方程的另一根为x1,
∵该方程的一个根为1,∴.解得.
∴a的值为,该方程的另一根为.
(2)∵,
∴不论a取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.
19、
【解析】
试题分析:按照解一元一次不等式的步骤解不等式即可.
试题解析:,
,
.
解集在数轴上表示如下
点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
20、(1),,或;(2) .
【解析】
【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;
(2)画出两个函数的图象,观察函数的图象即可得.
【详解】(1)∵函数的图象交于点,
∴n=mk,
∵m=2n,∴n=2nk,
∴k=,
∴直线解析式为:y=x,
解方程组,得,,
∴交点P的坐标为:(,)或(-,-);
(2)由题意画出函数的图象与函数的图象如图所示,
∵函数的图象与函数的交点P的坐标为(m,n),
∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,
当k>1时,结合图象可知此时|m|<|n|,
∴当时,≥1.
【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.
21、建筑物的高度为.建筑物的高度为.
【解析】
分析:过点D作DE⊥AB于于E,则DE=BC=60m.在Rt△ABC中,求出AB.在Rt△ADE中求出AE即可解决问题.
详解:过点D作DE⊥AB于于E,则DE=BC=60m,
在Rt△ABC中,tan53°==,∴AB=80(m).
在Rt△ADE中,tan37°==,∴AE=45(m),
∴BE=CD=AB﹣AE=35(m).
答:两座建筑物的高度分别为80m和35m.
点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
22、(1)10,144;(2)详见解析;(3)96
【解析】
(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;
(2)依据D类型留守学生的数量,即可将条形统计图补充完整;
(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.
【详解】
解:(1)2÷20%=10(人),
×100%×360°=144°,
故答案为10,144;
(2)10﹣2﹣4﹣2=2(人),
如图所示:
(3)2400××20%=96(人),
答:估计该校将有96名留守学生在此关爱活动中受益.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
23、(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【解析】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.
(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60-x)分,分别求出甲乙两种生产多少件产品.
【详解】
(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.
由题意得:,
解这个方程组得:,
答:生产一件甲产品需要15分,生产一件乙产品需要20分.
(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60-x)分.
则生产甲种产品件,生产乙种产品件.
∴w总额=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,
又≥60,得x≥900,
由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元),
则小王该月收入最多是1644+1900=3544(元),
此时甲有=60(件),
乙有:=555(件),
答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.
【点睛】
考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.
24、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
中位数
众数
平均数
方差
9.2
9.3
9.1
0.3
生产甲产品数(件)
生产乙产品数(件)
所用时间(分钟)
10
10
350
30
20
850
福建省福安市环城区片区2022年中考押题数学预测卷含解析: 这是一份福建省福安市环城区片区2022年中考押题数学预测卷含解析,共18页。试卷主要包含了下面说法正确的个数有,已知等内容,欢迎下载使用。
2022届福建省南平市剑津片区重点达标名校中考押题数学预测卷含解析: 这是一份2022届福建省南平市剑津片区重点达标名校中考押题数学预测卷含解析,共24页。试卷主要包含了tan30°的值为等内容,欢迎下载使用。
2022届福建省福州三牧中学中考押题数学预测卷含解析: 这是一份2022届福建省福州三牧中学中考押题数学预测卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中比﹣1小的数是,下列命题是真命题的是,如图所示的几何体的俯视图是等内容,欢迎下载使用。