|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省深圳实验三部联考2022年中考数学最后一模试卷含解析
    立即下载
    加入资料篮
    广东省深圳实验三部联考2022年中考数学最后一模试卷含解析01
    广东省深圳实验三部联考2022年中考数学最后一模试卷含解析02
    广东省深圳实验三部联考2022年中考数学最后一模试卷含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳实验三部联考2022年中考数学最后一模试卷含解析

    展开
    这是一份广东省深圳实验三部联考2022年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,2cs 30°的值等于等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是(  )

    A.0个 B.1个或2个
    C.0个、1个或2个 D.只有1个
    2. (3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是(  )

    A.2 B. C.5 D.
    3.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
    A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
    4.计算-5+1的结果为( )
    A.-6 B.-4 C.4 D.6
    5.如图所示是放置在正方形网格中的一个 ,则的值为( )

    A. B. C. D.
    6.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )

    A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
    C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
    7.已知关于x的一元二次方程有实数根,则m的取值范围是( )
    A. B. C. D.
    8.下列图形中,是中心对称图形但不是轴对称图形的是(  )
    A. B. C. D.
    9.如图,矩形纸片中,,,将沿折叠,使点落在点处,交于点,则的长等于( )

    A. B. C. D.
    10.2cos 30°的值等于(  )
    A.1 B. C. D.2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与
    直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为 .
    12.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.

    13.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.

    14.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.

    15.已知m=,n=,那么2016m﹣n=_____.
    16.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值为_____.
    三、解答题(共8题,共72分)
    17.(8分)已知抛物线y=a(x+3)(x﹣1)(a≠0),与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.
    (1)若点D的横坐标为2,求抛物线的函数解析式;
    (2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
    (3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?

    18.(8分)(1)计算:﹣2sin45°+(2﹣π)0﹣()﹣1;
    (2)先化简,再求值•(a2﹣b2),其中a=,b=﹣2.
    19.(8分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
    (1)求楼房的高度约为多少米?
    (2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.

    20.(8分)为迎接“全民阅读日“系列活动,某校围绕学生日人均阅读时间这一问题,对八年级学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:
    (1)本次共抽查了八年级学生多少人;
    (2)请直接将条形统计图补充完整;
    (3)在扇形统计图中,1〜1.5小时对应的圆心角是多少度;
    (4)根据本次抽样调查,估计全市50000名八年级学生日人均阅读时间状况,其中在0.5〜1.5小时的有多少人?

    21.(8分)先化简,后求值:,其中.
    22.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.
    求反比例函数的表达式;在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
    23.(12分)有这样一个问题:探究函数y=﹣2x的图象与性质.
    小东根据学习函数的经验,对函数y=﹣2x的图象与性质进行了探究.
    下面是小东的探究过程,请补充完整:
    (1)函数y=﹣2x的自变量x的取值范围是_______;
    (2)如表是y与x的几组对应值
    x

    ﹣4
    ﹣3.5
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    3
    3.5
    4

    y






    0


    m



    则m的值为_______;
    (3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
    (4)观察图象,写出该函数的两条性质________.

    24.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为BC边上的点,AB=BD,反比例函数在第一象限内的图象经过点D(m,2)和AB边上的点E(n,).
    (1)求m、n的值和反比例函数的表达式.
    (2)将矩形OABC的一角折叠,使点O与点D重合,折痕分别与x轴,y轴正半轴交于点F,G,求线段FG的长.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.
    【详解】
    ∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,
    ∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,
    当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,
    当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,
    故选C.
    【点睛】
    考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.
    2、B
    【解析】
    根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.
    【详解】
    根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.
    故选B
    【点睛】
    本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.
    3、C
    【解析】
    科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
    【详解】
    解:由科学记数法可知:250000 m2=2.5×105m2,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    4、B
    【解析】
    根据有理数的加法法则计算即可.
    【详解】
    解:-5+1=-(5-1)=-1.
    故选B.
    【点睛】
    本题考查了有理数的加法.
    5、D
    【解析】
    首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
    【详解】
    解:过点A向CB引垂线,与CB交于D,

    △ABD是直角三角形,
    ∵BD=4,AD=2,
    ∴tan∠ABC=
    故选:D.
    【点睛】
    此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
    6、C
    【解析】
    试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,
    故选C.

    考点:1、矩形性质,2、勾股定理,3、三角形的中位线
    7、C
    【解析】
    解:∵关于x的一元二次方程有实数根,
    ∴△==,
    解得m≥1,
    故选C.
    【点睛】
    本题考查一元二次方程根的判别式.
    8、B
    【解析】
    根据轴对称图形与中心对称图形的概念判断即可.
    【详解】
    解:A、是轴对称图形,也是中心对称图形,故错误;
    B、是中心对称图形,不是轴对称图形,故正确;
    C、是轴对称图形,也是中心对称图形,故错误;
    D、是轴对称图形,也是中心对称图形,故错误.
    故选B.
    【点睛】
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、B
    【解析】
    由折叠的性质得到AE=AB,∠E=∠B=90°,易证Rt△AEF≌Rt△CDF,即可得到结论EF=DF;易得FC=FA,设FA=x,则FC=x,FD=6-x,在Rt△CDF中利用勾股定理得到关于x的方程x2=42+(6-x)2,解方程求出x即可.
    【详解】
    ∵矩形ABCD沿对角线AC对折,使△ABC落在△ACE的位置,
    ∴AE=AB,∠E=∠B=90°,
    又∵四边形ABCD为矩形,
    ∴AB=CD,
    ∴AE=DC,
    而∠AFE=∠DFC,
    ∵在△AEF与△CDF中,

    ∴△AEF≌△CDF(AAS),
    ∴EF=DF;
    ∵四边形ABCD为矩形,
    ∴AD=BC=6,CD=AB=4,
    ∵Rt△AEF≌Rt△CDF,
    ∴FC=FA,
    设FA=x,则FC=x,FD=6-x,
    在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,
    则FD=6-x=.
    故选B.
    【点睛】
    考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.
    10、C
    【解析】
    分析:根据30°角的三角函数值代入计算即可.
    详解:2cos30°=2×=.
    故选C.
    点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    解:∵OA的中点是D,点A的坐标为(﹣6,4),
    ∴D(﹣1,2),
    ∵双曲线y=经过点D,
    ∴k=﹣1×2=﹣6,
    ∴△BOC的面积=|k|=1.
    又∵△AOB的面积=×6×4=12,
    ∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.
    12、1.
    【解析】
    根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
    【详解】
    根据题意分析可得:第1个图案中棋子的个数5个.
    第2个图案中棋子的个数5+6=11个.
    ….
    每个图形都比前一个图形多用6个.
    ∴第30个图案中棋子的个数为5+29×6=1个.
    故答案为1.
    【点睛】
    考核知识点:图形的规律.分析出一般数量关系是关键.
    13、1
    【解析】
    根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
    【详解】
    ∵DE垂直平分AC,∠A=30°,
    ∴AE=CE,∠ACE=∠A=30°,
    ∵∠ACB=80°,
    ∴∠BCE=80°-30°=1°.
    故答案为:1.
    14、2
    【解析】
    延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.
    【详解】
    解:如图所示,

    延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.
    由勾股定理AB′=2
    ∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.
    考点:解直角三角形的应用
    点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键
    15、1
    【解析】
    根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
    【详解】
    解:∵m===,
    ∴m=n,
    ∴2016m-n=20160=1.
    故答案为:1
    【点睛】
    本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
    16、-1或-4
    【解析】
    分析:
    设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.
    详解:
    由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:

    ∴,
    ∴,
    化简整理得:,解得 .
    故答案为:-1或-4.
    点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.

    三、解答题(共8题,共72分)
    17、(1)y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)(﹣4,﹣)和(﹣6,﹣3)(3)(1,﹣4).
    【解析】
    试题分析:(1)根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;(2)作PH⊥x轴于H,设点P的坐标为(m,n),分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;(3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF时,t最小即可.
    试题解析:(1)∵y=a(x+3)(x﹣1),
    ∴点A的坐标为(﹣3,0)、点B两的坐标为(1,0),
    ∵直线y=﹣x+b经过点A,
    ∴b=﹣3,
    ∴y=﹣x﹣3,
    当x=2时,y=﹣5,
    则点D的坐标为(2,﹣5),
    ∵点D在抛物线上,
    ∴a(2+3)(2﹣1)=﹣5,
    解得,a=﹣,
    则抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;
    (2)作PH⊥x轴于H,
    设点P的坐标为(m,n),
    当△BPA∽△ABC时,∠BAC=∠PBA,
    ∴tan∠BAC=tan∠PBA,即=,
    ∴=,即n=﹣a(m﹣1),
    ∴,
    解得,m1=﹣4,m2=1(不合题意,舍去),
    当m=﹣4时,n=5a,
    ∵△BPA∽△ABC,
    ∴=,即AB2=AC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则n=5a=﹣,
    ∴点P的坐标为(﹣4,﹣);
    当△PBA∽△ABC时,∠CBA=∠PBA,
    ∴tan∠CBA=tan∠PBA,即=,
    ∴=,即n=﹣3a(m﹣1),
    ∴,
    解得,m1=﹣6,m2=1(不合题意,舍去),
    当m=﹣6时,n=21a,
    ∵△PBA∽△ABC,
    ∴=,即AB2=BC•PB,
    ∴42=•,
    解得,a1=(不合题意,舍去),a2=﹣,
    则点P的坐标为(﹣6,﹣),
    综上所述,符合条件的点P的坐标为(﹣4,﹣)和(﹣6,﹣);

    (3)作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,
    则tan∠DAN===,
    ∴∠DAN=60°,
    ∴∠EDF=60°,
    ∴DE==EF,
    ∴Q的运动时间t=+=BE+EF,
    ∴当BE和EF共线时,t最小,
    则BE⊥DM,E(1,﹣4).

    考点:二次函数综合题.
    18、 (1)-2 (2)-
    【解析】
    试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;
    (2)先把和a2﹣b2分解因式约分化简,然后将a和b的值代入化简后的式子中计算,即可得到原式的值.
    解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1
    =2﹣2×+1﹣3
    =2﹣+1﹣3
    =﹣2;
    (2)•(a2﹣b2)
    =•(a+b)(a﹣b)
    =a+b,
    当a=,b=﹣2时,原式=+(﹣2)=﹣.
    19、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
    【解析】
    试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
    试题解析:解:(1)当当时,在Rt△ABE中,
    ∵,
    ∴BA=10tan60°=米.
    即楼房的高度约为17.3米.

    当时,小猫仍可晒到太阳.理由如下:
    假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
    ∵∠BFA=45°,
    ∴,此时的影长AF=BA=17.3米,
    所以CF=AF-AC=17.3-17.2=0.1.
    ∴CH=CF=0.1米,
    ∴大楼的影子落在台阶MC这个侧面上.
    ∴小猫仍可晒到太阳.
    考点:解直角三角形.
    20、(1)本次共抽查了八年级学生是150人;(2)条形统计图补充见解析;(3)108;(4)估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
    【解析】
    (1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;
    (2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;
    (3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;
    (4)利用总人数12000乘以对应的比例即可.
    【详解】
    (1)本次共抽查了八年级学生是:30÷20%=150人;
    故答案为150;
    (2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=1.

    (3)人均阅读时间在1~1.5小时对应的圆心角度数是:
    故答案为108;
    (4) (人),
    答:估计该市12000名七年级学生中日人均阅读时间在0.5~1.5小时的40000人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    21、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    22、(1);(2)P(,0);(3)E(,﹣1),在.
    【解析】
    (1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;
    (2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;
    (3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.
    【详解】
    (1)∵点A(,1)在反比例函数的图象上,
    ∴k=×1=,
    ∴反比例函数的表达式为;
    (2)∵A(,1),AB⊥x轴于点C,
    ∴OC=,AC=1,由射影定理得=AC•BC,
    可得BC=3,B(,﹣3),S△AOB=××4=,
    ∴S△AOP=S△AOB=.
    设点P的坐标为(m,0),
    ∴×|m|×1=,
    ∴|m|=,
    ∵P是x轴的负半轴上的点,
    ∴m=﹣,
    ∴点P的坐标为(,0);
    (3)点E在该反比例函数的图象上,理由如下:
    ∵OA⊥OB,OA=2,OB=,AB=4,
    ∴sin∠ABO===,
    ∴∠ABO=30°,
    ∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,
    ∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,
    ∴E(,﹣1),
    ∵×(﹣1)=,
    ∴点E在该反比例函数的图象上.
    考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.
    23、(1)任意实数;(2);(3)见解析;(4)①当x<﹣2时,y随x的增大而增大;②当x>2时,y随x的增大而增大.
    【解析】
    (1)没有限定要求,所以x为任意实数,
    (2)把x=3代入函数解析式即可,
    (3)描点,连线即可解题,
    (4)看图确定极点坐标,即可找到增减区间.
    【详解】
    解:(1)函数y=﹣2x的自变量x的取值范围是任意实数;
    故答案为任意实数;
    (2)把x=3代入y=﹣2x得,y=﹣;
    故答案为﹣;
    (3)如图所示;
    (4)根据图象得,①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.
    故答案为①当x<﹣2时,y随x的增大而增大;
    ②当x>2时,y随x的增大而增大.

    【点睛】
    本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.
    24、(1)y=;(2).
    【解析】
    (1)根据题意得出,解方程即可求得m、n的值,然后根据待定系数法即可求得反比例函数的解析式;
    (2)设OG=x,则GD=OG=x,CG=2﹣x,根据勾股定理得出关于x的方程,解方程即可求得DG的长,过F点作FH⊥CB于H,易证得△GCD∽△DHF,根据相似三角形的性质求得FG,最后根据勾股定理即可求得.
    【详解】
    (1)∵D(m,2),E(n,),
    ∴AB=BD=2,
    ∴m=n﹣2,
    ∴,解得,
    ∴D(1,2),
    ∴k=2,
    ∴反比例函数的表达式为y=;
    (2)设OG=x,则GD=OG=x,CG=2﹣x,
    在Rt△CDG中,x2=(2﹣x)2+12,
    解得x=,
    过F点作FH⊥CB于H,
    ∵∠GDF=90°,
    ∴∠CDG+∠FDH=90°,
    ∵∠CDG+∠CGD=90°,
    ∴∠CGD=∠FDH,
    ∵∠GCD=∠FHD=90°,
    ∴△GCD∽△DHF,
    ∴,即,
    ∴FD=,
    ∴FG=.

    【点睛】
    本题考查了反比例函数与几何综合题,涉及了待定系数法、勾股定理、相似三角形的判定与性质等,熟练掌握待定系数法、相似三角形的判定与性质是解题的关键.

    相关试卷

    2023年广东省深圳市宝安中学(集团)实验学校中考数学一模试卷(含解析): 这是一份2023年广东省深圳市宝安中学(集团)实验学校中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    广东省深圳市锦华实验校2022年中考数学最后一模试卷含解析: 这是一份广东省深圳市锦华实验校2022年中考数学最后一模试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,的算术平方根是,某反比例函数的图象经过点等内容,欢迎下载使用。

    2022年广东省深圳外国语学校中考数学最后一模试卷含解析: 这是一份2022年广东省深圳外国语学校中考数学最后一模试卷含解析,共20页。试卷主要包含了定义运算“※”为,下列说法错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map