|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省2022年中考考前最后一卷数学试卷含解析
    立即下载
    加入资料篮
    广东省2022年中考考前最后一卷数学试卷含解析01
    广东省2022年中考考前最后一卷数学试卷含解析02
    广东省2022年中考考前最后一卷数学试卷含解析03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省2022年中考考前最后一卷数学试卷含解析

    展开
    这是一份广东省2022年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了-2的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有(  )

    A.4个 B.3个 C.2个 D.1个
    2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
    A. B. C. D.
    3.已知一次函数y=kx+3和y=k1x+5,假设k<0且k1>0,则这两个一次函数的图像的交点在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    4.下列几何体中,其三视图都是全等图形的是(  )
    A.圆柱 B.圆锥 C.三棱锥 D.球
    5.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是(  )

    A.6 B.8 C.10 D.12
    6.下列图形中,属于中心对称图形的是(  )
    A. B.
    C. D.
    7.在以下四个图案中,是轴对称图形的是(  )
    A. B. C. D.
    8.-2的倒数是( )
    A.-2 B. C. D.2
    9.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的(  )

    A.平均数 B.中位数 C.众数 D.方差
    10.如图,是半圆的直径,点、是半圆的三等分点,弦.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为(  )

    A. B. C. D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.若代数式有意义,则实数x的取值范围是____.
    12.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)
    13.用半径为6cm,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为_______cm.
    14.分解因式:8x²-8xy+2y²= _________________________ .
    15.三角形的每条边的长都是方程的根,则三角形的周长是 .
    16.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
    17.关于的一元二次方程有两个相等的实数根,则________.
    三、解答题(共7小题,满分69分)
    18.(10分)已知关于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有两个不相等的实数根.
    (1)求m的取值范围;
    (2)若m为非负整数,且该方程的根都是无理数,求m的值.
    19.(5分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.

    20.(8分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
    (1)求证:PC∥BD;
    (2)若⊙O的半径为2,∠ABP=60°,求CP的长;
    (3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.

    21.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    22.(10分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.
    (1)求证:AH是⊙O的切线;
    (2)若OB=4,AC=6,求sin∠ACB的值;
    (3)若,求证:CD=DH.

    23.(12分)抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.

    24.(14分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. 
    (1)参加音乐类活动的学生人数为   人,参加球类活动的人数的百分比为 
    (2)请把图2(条形统计图)补充完整; 
    (3)该校学生共600人,则参加棋类活动的人数约为 . 
     (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
    【详解】
    由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
    由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
    当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
    乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
    故选B.
    【点睛】
    本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
    2、C
    【解析】
    列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
    【详解】
    画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
    故选C.

    3、B
    【解析】
    依题意在同一坐标系内画出图像即可判断.
    【详解】
    根据题意可作两函数图像,由图像知交点在第二象限,故选B.

    【点睛】
    此题主要考查一次函数的图像,解题的关键是根据题意作出相应的图像.
    4、D
    【解析】
    分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.
    详解:圆柱,圆锥,三棱锥,球中,
    三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,
    故选D.
    点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.
    5、B
    【解析】
    分析:过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD=2,然后根据三角形的面积公式列式计算即可得解.
    详解:如图,过点D作DE⊥AB于E,

    ∵AB=8,CD=2,
    ∵AD是∠BAC的角平分线,
    ∴DE=CD=2,
    ∴△ABD的面积
    故选B.
    点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.
    6、B
    【解析】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    【详解】
    A、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    B、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;
    C、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;
    D、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.
    故选B.
    【点睛】
    本题考查了轴对称与中心对称图形的概念:
    中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、A
    【解析】
    根据轴对称图形的概念对各选项分析判断利用排除法求解.
    【详解】
    A、是轴对称图形,故本选项正确;
    B、不是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:A.
    【点睛】
    本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    8、B
    【解析】
    根据倒数的定义求解.
    【详解】
    -2的倒数是-
    故选B
    【点睛】
    本题难度较低,主要考查学生对倒数相反数等知识点的掌握
    9、B
    【解析】
    根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.
    【详解】
    因为需要保证不少于50%的骑行是免费的,
    所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,
    故选B.
    【点睛】
    本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性。
    10、D
    【解析】
    连接OC、OD、BD,根据点C,D是半圆O的三等分点,推导出OC∥BD且△BOD是等边三角形,阴影部分面积转化为扇形BOD的面积,分别计算出扇形BOD的面积和半圆的面积,然后根据概率公式即可得出答案.
    【详解】
    解:如图,连接OC、OD、BD,

    ∵点C、D是半圆O的三等分点,
    ∴,
    ∴∠AOC=∠COD=∠DOB=60°,
    ∵OC=OD,
    ∴△COD是等边三角形,
    ∴OC=OD=CD,
    ∵,
    ∴,
    ∵OB=OD,
    ∴△BOD是等边三角形,则∠ODB=60°,
    ∴∠ODB=∠COD=60°,
    ∴OC∥BD,
    ∴,
    ∴S阴影=S扇形OBD,
    S半圆O,
    飞镖落在阴影区域的概率,
    故选:D.
    【点睛】
    本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x≠﹣5.
    【解析】
    根据分母不为零分式有意义,可得答案.
    【详解】
    由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5.
    【点睛】
    本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键.
    12、-1
    【解析】
    试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限, ∴k<1,b<1.
    考点:一次函数图象与系数的关系
    13、1.
    【解析】
    解:设圆锥的底面圆半径为r,
    根据题意得1πr=,
    解得r=1,
    即圆锥的底面圆半径为1cm.
    故答案为:1.
    【点睛】
    本题考查圆锥的计算,掌握公式正确计算是解题关键.
    14、1
    【解析】
    提取公因式1,再对余下的多项式利用完全平方公式继续分解.完全平方公式:a1±1ab+b1=(a±b)1.
    【详解】
    8x1-8xy+1y²=1(4x1-4xy+y²)=1(1x-y)1.
    故答案为:1(1x-y)1
    【点睛】
    此题考查的是提取公因式法和公式法分解因式,本题关键在于提取公因式可以利用完全平方公式进行二次因式分解.
    15、6或2或12
    【解析】
    首先用因式分解法求得方程的根,再根据三角形的每条边的长都是方程的根,进行分情况计算.
    【详解】
    由方程,得=2或1.
    当三角形的三边是2,2,2时,则周长是6;
    当三角形的三边是1,1,1时,则周长是12;
    当三角形的三边长是2,2,1时,2+2=1,不符合三角形的三边关系,应舍去;
    当三角形的三边是1,1,2时,则三角形的周长是1+1+2=2.
    综上所述此三角形的周长是6或12或2.
    16、y2<y1<y2
    【解析】
    分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
    详解:设t=k2﹣2k+2,
    ∵k2﹣2k+2=(k﹣1)2+2>1,
    ∴t>1.
    ∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
    ∴y1=﹣,y2=﹣t,y2=t,
    又∵﹣t<﹣<t,
    ∴y2<y1<y2.
    故答案为:y2<y1<y2.
    点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.
    17、-1.
    【解析】
    根据根的判别式计算即可.
    【详解】
    解:依题意得:
    ∵关于的一元二次方程有两个相等的实数根,
    ∴= =4-41(-k)=4+4k=0
    解得,k=-1.
    故答案为:-1.
    【点睛】
    本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.

    三、解答题(共7小题,满分69分)
    18、(1)m<2;(2)m=1.
    【解析】
    (1)利用方程有两个不相等的实数根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
    (2)先利用m的范围得到m=3或m=1,再分别求出m=3和m=1时方程的根,然后根据根的情况确定满足条件的m的值.
    【详解】
    (1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.
    ∵方程有两个不相等的实数根,
    ∴△>3.
    即﹣8m+2>3.
    解得 m<2;
    (2)∵m<2,且 m 为非负整数,
    ∴m=3 或 m=1,
    当 m=3 时,原方程为 x2-2x-3=3,
    解得 x1=3,x2=﹣1(不符合题意舍去), 当 m=1 时,原方程为 x2﹣2=3,
    解得 x1=,x2=﹣ ,
    综上所述,m=1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=3(a≠3)的根与△=b2-4ac有如下关系:当△>3时,方程有两个不相等的实数根;当△=3时,方程有两个相等的实数根;当△<3时,方程无实数根.
    19、(1)答案见解析;(2)
    【解析】
    (1)根据三角形角平分线的定义,即可得到AD; 
    (2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.
    【详解】
    解:(1)如图所示,AD即为所求; 

    (2)如图,过D作DE⊥AB于E, 
    ∵AD平分∠BAC, 
    ∴DE=CD=4, 
    ∴S△ABD=AB·DE=20cm2.
    【点睛】
    掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.
    20、(1)证明见解析;(2)+;(3)的值不变,.
    【解析】
    (1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
    (2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
    (3)证明△CBP∽△ABD,根据相似三角形的性质解答.
    【详解】
    (1)证明:∵△ABC是等腰直角三角形,且AC=BC,
    ∴∠ABC=45°,∠ACB=90°,
    ∴∠APC=∠ABC=45°,
    ∴AB为⊙O的直径,
    ∴∠APB=90°,
    ∵PD=PB,
    ∴∠PBD=∠D=45°,
    ∴∠APC=∠D=45°,
    ∴PC∥BD;
    (2)作BH⊥CP,垂足为H,

    ∵⊙O的半径为2,∠ABP=60°,
    ∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
    在Rt△BCH中,CH=BC•cos∠BCH=,
    BH=BC•sin∠BCH=,
    在Rt△BHP中,PH=BH=,
    ∴CP=CH+PH=+;
    (3)的值不变,
    ∵∠BCP=∠BAP,∠CPB=∠D,
    ∴△CBP∽△ABD,
    ∴=,
    ∴=,即=.
    【点睛】
    本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
    21、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
    【解析】
    【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
    (2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
    【详解】(1)设第一批饮料进货单价为元,则:
    解得:
    经检验:是分式方程的解
    答:第一批饮料进货单价为8元.
    (2)设销售单价为元,则:

    化简得:,
    解得:,
    答:销售单价至少为11元.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
    22、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    (1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;
    (2)利用正弦的定义计算;
    (3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=CE,根据等腰三角形的性质证明.
    【详解】
    (1)证明:连接OA,
    由圆周角定理得,∠ACB=∠ADB,
    ∵∠ADE=∠ACB,
    ∴∠ADE=∠ADB,
    ∵BD是直径,
    ∴∠DAB=∠DAE=90°,
    在△DAB和△DAE中,

    ∴△DAB≌△DAE,
    ∴AB=AE,又∵OB=OD,
    ∴OA∥DE,又∵AH⊥DE,
    ∴OA⊥AH,
    ∴AH是⊙O的切线;
    (2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,
    ∴∠E=∠ACD,
    ∴AE=AC=AB=1.
    在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,
    ∴sin∠ADB==,即sin∠ACB=;
    (3)证明:由(2)知,OA是△BDE的中位线,
    ∴OA∥DE,OA=DE.
    ∴△CDF∽△AOF,
    ∴=,
    ∴CD=OA=DE,即CD=CE,
    ∵AC=AE,AH⊥CE,
    ∴CH=HE=CE,
    ∴CD=CH,
    ∴CD=DH.

    【点睛】
    本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.
    23、(1)
    (2)(0,-1)
    (3)(1,0)(9,0)
    【解析】
    (1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
    (2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
    (3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
    【详解】
    解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
    得 ,
    解得
    ∴y=x2−2x−3;
    (2)将点D(m,−m−1)代入y=x2−2x−3中,得
    m2−2m−3=−m−1,
    解得m=2或−1,
    ∵点D(m,−m−1)在第四象限,
    ∴D(2,−3),
    ∵直线BC解析式为y=x−3,
    ∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
    ∴点D关于直线BC对称的点D'(0,−1);
    (3)存在.满足条件的点P有两个.
    ①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
    ∵直线BD解析式为y=3x−9,
    ∵直线CP过点C,
    ∴直线CP的解析式为y=3x−3,
    ∴点P坐标(1,0),
    ②连接BD′,过点C作CP′∥BD′,交x轴于P′,
    ∴∠P′CB=∠D′BC,
    根据对称性可知∠D′BC=∠CBD,
    ∴∠P′CB=∠CBD,
    ∵直线BD′的解析式为
    ∵直线CP′过点C,
    ∴直线CP′解析式为,
    ∴P′坐标为(9,0),

    综上所述,满足条件的点P坐标为(1,0)或(9,0).
    【点睛】
    本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.
    24、(1)7、30%;(2)补图见解析;(3)105人;(3) 
    【解析】
    试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;
    (2)根据(1)中所求数据即可补全条形图;
    (3)总人数乘以棋类活动的百分比可得;
    (4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.
    试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为×100%=30%,故答案为7,30%;
    (2)补全条形图如下:

    (3)该校学生共600人,则参加棋类活动的人数约为600×=105,故答案为105;
    (4)画树状图如下:

    共有12种情况,选中一男一女的有6种,则P(选中一男一女)==.
    点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

    相关试卷

    2022年林芝中考考前最后一卷数学试卷含解析: 这是一份2022年林芝中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,点A等内容,欢迎下载使用。

    2022年广东省汕头市苏湾中学中考考前最后一卷数学试卷含解析: 这是一份2022年广东省汕头市苏湾中学中考考前最后一卷数学试卷含解析,共27页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中比﹣1小的数是,下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。

    2022届广东省珠海市达标名校中考考前最后一卷数学试卷含解析: 这是一份2022届广东省珠海市达标名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了下列运算中,计算结果正确的是,下列实数中,无理数是,下列计算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map