终身会员
搜索
    上传资料 赚现金
    广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析
    立即下载
    加入资料篮
    广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析01
    广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析02
    广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析

    展开
    这是一份广东省徐闻县市级名校2021-2022学年中考联考数学试卷含解析,共27页。试卷主要包含了|–|的倒数是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为(  )
    A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×107
    2.超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程(  )
    A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90
    3.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
    ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
    你认为其中正确信息的个数有

    A.2个 B.3个 C.4个 D.5个
    4.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是(  )

    A. B. C. D.
    5.如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是( )

    A.2 B.3 C.4 D.5
    6.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是(  )
    A.27 B.36 C.27或36 D.18
    7.对于非零的两个实数、,规定,若,则的值为( )
    A. B. C. D.
    8.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有(  )个〇.

    A.6055 B.6056 C.6057 D.6058
    9.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是(  )

    A. B. C. D.
    10.|–|的倒数是( )
    A.–2 B.– C. D.2
    11.如图,两张完全相同的正六边形纸片边长为重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a个单位长度,则空白部分与阴影部分面积之比是  

    A.5:2 B.3:2 C.3:1 D.2:1
    12.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为(  )
    A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣8
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
    14.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.

    15.不等式组的解集为________.
    16.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.

    17.方程的解为    .
    18.如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB=__________°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.

    (1)求反比例函数和一次函数的解析式;
    (2)请连结,并求出的面积;
    (3)直接写出当时,的解集.
    20.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
    补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
    21.(6分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)

    22.(8分)在平面直角坐标系中,已知直线y=﹣x+4和点M(3,2)
    (1)判断点M是否在直线y=﹣x+4上,并说明理由;
    (2)将直线y=﹣x+4沿y轴平移,当它经过M关于坐标轴的对称点时,求平移的距离;
    (3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.

    23.(8分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.
    (1)求该抛物线所表示的二次函数的表达式;
    (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
    (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.

    24.(10分)如图,在▱ABCD中,过点A作AE⊥BC于点E,AF⊥DC于点F,AE=AF.
    (1)求证:四边形ABCD是菱形;
    (2)若∠EAF=60°,CF=2,求AF的长.

    25.(10分)如图,为的直径,,为上一点,过点作的弦,设.

    (1)若时,求、的度数各是多少?
    (2)当时,是否存在正实数,使弦最短?如果存在,求出的值,如果不存在,说明理由;
    (3)在(1)的条件下,且,求弦的长.
    26.(12分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
    成绩分组
    频数
    频率
    50≤x<60
    8
    0.16
    60≤x<70
    12
    a
    70≤x<80

    0.5
    80≤x<90
    3
    0.06
    90≤x≤100
    b
    c
    合计

    1
    (1)写出a,b,c的值;
    (2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
    (3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

    27.(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    详解:0.000000823=8.23×10-1.
    故选B.
    点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    2、A
    【解析】
    试题分析:设某种书包原价每个x元,根据题意列出方程解答即可. 设某种书包原价每个x元,
    可得:0.8x﹣10=90
    考点:由实际问题抽象出一元一次方程.
    3、D
    【解析】
    试题分析:①如图,∵抛物线开口方向向下,∴a<1.
    ∵对称轴x,∴<1.∴ab>1.故①正确.
    ②如图,当x=1时,y<1,即a+b+c<1.故②正确.
    ③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
    ④如图,当x=﹣1时,y>1,即a﹣b+c>1,
    ∵抛物线与y轴交于正半轴,∴c>1.
    ∵b<1,∴c﹣b>1.
    ∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
    ⑤如图,对称轴,则.故⑤正确.
    综上所述,正确的结论是①②③④⑤,共5个.故选D.
    4、B
    【解析】
    试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.
    考点:简单组合体的三视图.
    5、A
    【解析】
    试题分析:已知AB是⊙O的弦,半径OC⊥AB于点D,由垂径定理可得AD=BD=4,在Rt△ADO中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.
    考点:垂径定理;勾股定理.
    6、B
    【解析】
    试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.
    试题解析:分两种情况:
    (3)当其他两条边中有一个为3时,将x=3代入原方程,
    得:33-33×3+k=0
    解得:k=37
    将k=37代入原方程,
    得:x3-33x+37=0
    解得x=3或9
    3,3,9不能组成三角形,不符合题意舍去;
    (3)当3为底时,则其他两边相等,即△=0,
    此时:344-4k=0
    解得:k=3
    将k=3代入原方程,
    得:x3-33x+3=0
    解得:x=6
    3,6,6能够组成三角形,符合题意.
    故k的值为3.
    故选B.
    考点:3.等腰三角形的性质;3.一元二次方程的解.
    7、D
    【解析】
    试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
    考点:1.新运算;2.分式方程.
    8、D
    【解析】
    设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
    【详解】
    设第n个图形有an个〇(n为正整数),
    观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
    ∴an=1+3n(n为正整数),
    ∴a2019=1+3×2019=1.
    故选:D.
    【点睛】
    此题考查规律型:图形的变化,解题关键在于找到规律
    9、B
    【解析】
    连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
    【详解】
    解,连结OB,

    ∵、是的切线,
    ∴,,则,
    ∵四边形APBO的内角和为360°,即,
    ∴,
    又∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
    10、D
    【解析】
    根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案.
    【详解】
    |−|=,的倒数是2;
    ∴|−|的倒数是2,
    故选D.
    【点睛】
    本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键.
    11、C
    【解析】
    求出正六边形和阴影部分的面积即可解决问题;
    【详解】
    解:正六边形的面积,
    阴影部分的面积,
    空白部分与阴影部分面积之比是::1,
    故选C.
    【点睛】
    本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    12、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    0.00000071的小数点向或移动7位得到7.1,
    所以0.00000071用科学记数法表示为7.1×10﹣7,
    故选C.
    【点睛】
    本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
    解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
    ∴y=(8-x)x,即y=-x2+8x,
    ∴当x=- =1时,y取得最大值.
    故答案为:1.
    14、
    【解析】
    设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.
    【详解】
    如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,

    由折叠可得,CE=BC,BP=EP,
    ∴CE2=1-a2,
    ∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
    ∵PE∥AB,∠A=90°,
    ∴∠PED=90°,
    ∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
    ∴PE=a2,
    ∵PE∥AB,
    ∴△DEP∽△DAB,
    ∴,即,
    ∴,
    即a2+a-1=0,
    解得(舍去),
    ∴AB的长等于AB=.
    故答案为.
    15、x>1
    【解析】
    分别求出两个不等式的解集,再求其公共解集.
    【详解】

    解不等式①,得:x>1,
    解不等式②,得:x>-3,
    所以不等式组的解集为:x>1,
    故答案为:x>1.
    【点睛】
    本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    16、40cm
    【解析】
    首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
    【详解】
    ∵圆锥的底面直径为60cm,
    ∴圆锥的底面周长为60πcm,
    ∴扇形的弧长为60πcm,
    设扇形的半径为r,
    则=60π,
    解得:r=40cm,
    故答案为:40cm.
    【点睛】
    本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
    17、.
    【解析】
    试题分析:首先去掉分母,观察可得最简公分母是,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:
    ,经检验,是原方程的根.
    18、1.
    【解析】
    连接BD,如图,根据圆周角定理得到∠ABD=90°,则利用互余计算出∠D=1°,然后再利用圆周角定理得到∠ACB的度数.
    【详解】
    连接BD,如图,

    ∵AD为△ABC的外接圆⊙O的直径,
    ∴∠ABD=90°,
    ∴∠D=90°﹣∠BAD=90°﹣50°=1°,
    ∴∠ACB=∠D=1°.
    故答案为1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1),;(2)4;(3).
    【解析】
    (1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
    (2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
    (3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
    【详解】
    解:(1)如图,连接,,
    ∵⊙C与轴,轴相切于点D,,且半径为,
    ,,
    ∴四边形是正方形,

    ,点,
    把点代入反比例函数中,
    解得:,
    ∴反比例函数解析式为:,
    ∵点在反比例函数上,
    把代入中,可得,

    把点和分别代入一次函数中,
    得出:,
    解得:,
    ∴一次函数的表达式为:;
    (2)如图,连接,
    ,点的横坐标为,
    的面积为:;
    (3)由,根据图象可知:当时,的解集为:.

    【点睛】
    本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
    20、(1)补图见解析;(2)27°;(3)1800名
    【解析】
    (1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;
    (2)用360°乘以对应的比例即可求解;
    (3)用总人数乘以对应的百分比即可求解.
    【详解】
    (1)抽取的总人数是:10÷25%=40(人),
    在B类的人数是:40×30%=12(人).

    (2)扇形统计图扇形D的圆心角的度数是:360×=27°;
    (3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).
    考点:条形统计图、扇形统计图.
    21、(20-5)千米.
    【解析】
    分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=x,在Rt△BCD中求得CD=x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=可得答案.
    详解:过点B作BD⊥ AC,

    依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),
    ∵BD⊥AC,
    ∴∠ABD=30°,∠CBD=53°,
    在Rt△ABD中,设AD=x,
    ∴tan∠ABD=
    即tan30°=,
    ∴BD=x,
    在Rt△DCB中,
    ∴tan∠CBD=
    即tan53°=,
    ∴CD=
    ∵CD+AD=AC,
    ∴x+=13,解得,x=
    ∴BD=12-,
    在Rt△BDC中,
    ∴cos∠CBD=tan60°=,
    即:BC=(千米),
    故B、C两地的距离为(20-5)千米.
    点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.
    22、(1)点M(1,2)不在直线y=﹣x+4上,理由见解析;(2)平移的距离为1或2;(1)2<n<1.
    【解析】
    (1)将x=1代入y=-x+4,求出y=-1+4=1≠2,即可判断点M(1,2)不在直线y=-x+4上;
    (2)设直线y=-x+4沿y轴平移后的解析式为y=-x+4+b.分两种情况进行讨论:①点M(1,2)关于x轴的对称点为点M1(1,-2);②点M(1,2)关于y轴的对称点为点M2(-1,2).分别求出b的值,得到平移的距离;
    (1)由直线y=kx+b经过点M(1,2),得到b=2-1k.由直线y=kx+b与直线y=-x+4交点的横坐标为n,得出y=kn+b=-n+4,k=.根据y=kx+b随x的增大而增大,得到k>0,即>0,那么①,或②,分别解不等式组即可求出n的取值范围.
    【详解】
    (1)点M不在直线y=﹣x+4上,理由如下:
    ∵当x=1时,y=﹣1+4=1≠2,
    ∴点M(1,2)不在直线y=﹣x+4上;
    (2)设直线y=﹣x+4沿y轴平移后的解析式为y=﹣x+4+b.
    ①点M(1,2)关于x轴的对称点为点M1(1,﹣2),
    ∵点M1(1,﹣2)在直线y=﹣x+4+b上,
    ∴﹣2=﹣1+4+b,
    ∴b=﹣1,
    即平移的距离为1;
    ②点M(1,2)关于y轴的对称点为点M2(﹣1,2),
    ∵点M2(﹣1,2)在直线y=﹣x+4+b上,
    ∴2=1+4+b,
    ∴b=﹣2,
    即平移的距离为2.
    综上所述,平移的距离为1或2;
    (1)∵直线y=kx+b经过点M(1,2),
    ∴2=1k+b,b=2﹣1k.
    ∵直线y=kx+b与直线y=﹣x+4交点的横坐标为n,
    ∴y=kn+b=﹣n+4,
    ∴kn+2﹣1k=﹣n+4,
    ∴k=.
    ∵y=kx+b随x的增大而增大,
    ∴k>0,即>0,
    ∴①,或②,
    不等式组①无解,不等式组②的解集为2<n<1.
    ∴n的取值范围是2<n<1.
    故答案为2<n<1.
    【点睛】
    本题考查了一次函数图象与几何变换,一次函数图象上点的坐标特征,一次函数的性质,解一元一次不等式组,都是基础知识,需熟练掌握.
    23、(1)y=﹣x2+x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    【解析】
    分析:(1)待定系数法求解可得;
    (2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;
    (3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再证△MBQ∽△BPQ得,即,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.
    详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),
    将点C(0,2)代入,得:-4a=2,
    解得:a=-,
    则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;
    (2)由题意知点D坐标为(0,-2),
    设直线BD解析式为y=kx+b,
    将B(4,0)、D(0,-2)代入,得:
    ,解得:,
    ∴直线BD解析式为y=x-2,
    ∵QM⊥x轴,P(m,0),
    ∴Q(m,-m2+m+2)、M(m,m-2),
    则QM=-m2+m+2-(m-2)=-m2+m+4,
    ∵F(0,)、D(0,-2),
    ∴DF=,
    ∵QM∥DF,
    ∴当-m2+m+4=时,四边形DMQF是平行四边形,
    解得:m=-1(舍)或m=3,
    即m=3时,四边形DMQF是平行四边形;
    (3)如图所示:

    ∵QM∥DF,
    ∴∠ODB=∠QMB,
    分以下两种情况:
    ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,
    则,
    ∵∠MBQ=90°,
    ∴∠MBP+∠PBQ=90°,
    ∵∠MPB=∠BPQ=90°,
    ∴∠MBP+∠BMP=90°,
    ∴∠BMP=∠PBQ,
    ∴△MBQ∽△BPQ,
    ∴,即,
    解得:m1=3、m2=4,
    当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,
    ∴m=3,点Q的坐标为(3,2);
    ②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,
    此时m=-1,点Q的坐标为(-1,0);
    综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.
    点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.
    【详解】
    请在此输入详解!
    24、 (1)见解析;(2)2
    【解析】
    (1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;
    方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;
    (2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.
    【详解】
    (1)证法一:连接AC,如图.

    ∵AE⊥BC,AF⊥DC,AE=AF,
    ∴∠ACF=∠ACE,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC.
    ∴∠DAC=∠ACB.
    ∴∠DAC=∠DCA,
    ∴DA=DC,
    ∴四边形ABCD是菱形.
    证法二:如图,

    ∵四边形ABCD是平行四边形,
    ∴∠B=∠D.
    ∵AE⊥BC,AF⊥DC,
    ∴∠AEB=∠AFD=90°,
    又∵AE=AF,
    ∴△AEB≌△AFD.
    ∴AB=AD,
    ∴四边形ABCD是菱形.
    (2)连接AC,如图.

    ∵AE⊥BC,AF⊥DC,∠EAF=60°,
    ∴∠ECF=120°,
    ∵四边形ABCD是菱形,
    ∴∠ACF=60°,
    在Rt△CFA中,AF=CF•tan∠ACF=2.
    【点睛】
    本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。
    25、(1), ;(2)见解析;(3).
    【解析】
    (1)连结AD、BD,利用m求出角的关系进而求出∠BCD、∠ACD的度数;
    (2)连结,由所给关系式结合直径求出AP,OP,根据弦CD最短,求出∠BCD、∠ACD的度数,即可求出m的值.
    (3)连结AD、BD,先求出AD,BD,AP,BP的长度,利用△APC∽△DPB和△CPB∽△APD得出比例关系式,得出比例关系式结合勾股定理求出CP,PD,即可求出CD.
    【详解】
    解:(1)如图1,连结、.

    是的直径

    又,

    (2)如图2,连结.

    ,,
    ,则,
    解得

    要使最短,则于





    故存在这样的值,且;
    (3)如图3,连结、.

    由(1)可得,
    ,,

    ,,



    ①,

    同理

    ③,
    由①得,由③得

    在中,,


    由②,得,

    【点睛】
    本题考查了相似三角形的判定与性质和锐角三角函数关系和圆周角定理等知识,掌握圆周角定理以及垂径定理是解题的关键.
    26、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.
    【解析】
    (1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;
    (2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;
    (3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.
    【详解】
    解:(1)样本人数为:8÷0.16=50(名)
    a=12÷50=0.24,
    70≤x<80的人数为:50×0.5=25(名)
    b=50﹣8﹣12﹣25﹣3=2(名)
    c=2÷50=0.04
    所以a=0.24,b=2,c=0.04;
    (2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:
    1000×0.6=600(人)
    ∴这1000名学生中有600人的竞赛成绩不低于70分;
    (3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B
    从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:

    抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,
    ∴抽取的2名同学来自同一组的概率P==
    【点睛】
    本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.
    27、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.

    相关试卷

    2021-2022学年广东省湛江市雷州市市级名校中考联考数学试题含解析: 这是一份2021-2022学年广东省湛江市雷州市市级名校中考联考数学试题含解析,共23页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年广东省潮州市市级名校中考联考数学试题含解析: 这是一份2021-2022学年广东省潮州市市级名校中考联考数学试题含解析,共27页。试卷主要包含了下列说法正确的是,如图,点A,B在双曲线y=等内容,欢迎下载使用。

    湖南省澧县市级名校2021-2022学年中考联考数学试卷含解析: 这是一份湖南省澧县市级名校2021-2022学年中考联考数学试卷含解析,共18页。试卷主要包含了下面说法正确的个数有,计算6m3÷的结果是,点A,如图所示的正方体的展开图是,下列运算正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map