|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省梅州市名校2022年中考联考数学试卷含解析
    立即下载
    加入资料篮
    广东省梅州市名校2022年中考联考数学试卷含解析01
    广东省梅州市名校2022年中考联考数学试卷含解析02
    广东省梅州市名校2022年中考联考数学试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省梅州市名校2022年中考联考数学试卷含解析

    展开
    这是一份广东省梅州市名校2022年中考联考数学试卷含解析,共24页。试卷主要包含了若二次函数的图象经过点,花园甜瓜是乐陵的特色时令水果,下列运算正确的是,计算﹣1﹣等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.的绝对值是(  )
    A.﹣4 B. C.4 D.0.4
    2.下列运算正确的是(  )
    A. =2 B.4﹣=1 C.=9 D.=2
    3.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    4.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是(  )
    A. B. C. D.
    5.若二次函数的图象经过点(﹣1,0),则方程的解为( )
    A., B., C., D.,
    6.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为(  )kg.
    A.180 B.200 C.240 D.300
    7.下列运算正确的是( )
    A. B. C. D.
    8.计算﹣1﹣(﹣4)的结果为(  )
    A.﹣3 B.3 C.﹣5 D.5
    9.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为  

    A. B. C. D.
    10.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:

    转盘总次数
    10
    20
    30
    50
    100
    150
    180
    240
    330
    450
    “和为7”出现频数
    2
    7
    10
    16
    30
    46
    59
    81
    110
    150
    “和为7”出现频率
    0.20
    0.35
    0.33
    0.32
    0.30
    0.30
    0.33
    0.34
    0.33
    0.33
    如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为( )
    A.0.33 B.0.34 C.0.20 D.0.35
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是_________.

    12.如图,已知圆锥的底面⊙O的直径BC=6,高OA=4,则该圆锥的侧面展开图的面积为 .

    13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
    《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
    译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
    设每头牛值金x两,每只羊值金y两,可列方程组为_____.

    14.边长为6的正六边形外接圆半径是_____.
    15.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.
    16.有三个大小一样的正六边形,可按下列方式进行拼接:
    方式1:如图1;
    方式2:如图2;

    若有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长是_______.有个边长均为1的正六边形,采用上述两种方式的一种或两种方式混合拼接,若得图案的外轮廓的周长为18,则的最大值为__________.
    17.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么的正切值为___.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.
    (1)画出△ABC关于直线n的对称图形△A′B′C′;
    (2)直线m上存在一点P,使△APB的周长最小;
    ①在直线m上作出该点P;(保留画图痕迹)
    ②△APB的周长的最小值为   .(直接写出结果)

    19.(5分)如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.
    (1)求证:∠CBE=∠F;
    (2)若⊙O的半径是2,点D是OC中点,∠CBE=15°,求线段EF的长.

    20.(8分)如图,已知在△ABC中,AB=AC=5,cosB=,P是边AB上一点,以P为圆心,PB为半径的⊙P与边BC的另一个交点为D,联结PD、AD.

    (1)求△ABC的面积;
    (2)设PB=x,△APD的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果△APD是直角三角形,求PB的长.
    21.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

    22.(10分)已知,在菱形ABCD中,∠ADC=60°,点H为CD上任意一点(不与C、D重合),过点H作CD的垂线,交BD于点E,连接AE.
    (1)如图1,线段EH、CH、AE之间的数量关系是   ;
    (2)如图2,将△DHE绕点D顺时针旋转,当点E、H、C在一条直线上时,求证:AE+EH=CH.

    23.(12分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在一象限,点P(t,0)是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,连接OD,PD,得△OPD。

    (1)当t=时,求DP的长
    (2)在点P运动过程中,依照条件所形成的△OPD面积为S
    ①当t>0时,求S与t之间的函数关系式
    ②当t≤0时,要使s=,请直接写出所有符合条件的点P的坐标.
    24.(14分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5
    a
    0.2
    6
    18
    0.1
    7
    14
    b
    8
    8
    0.16
    合计
    50
    c
    我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.1.
    (1)统计表中的a、b、c的值;
    (2)请将频数分布表直方图补充完整;
    (3)求所有被调查学生课外阅读的平均本数;
    (4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    分析:根据绝对值的性质,一个负数的绝对值等于其相反数,可有相反数的意义求解.
    详解:因为-的相反数为
    所以-的绝对值为.
    故选:B
    点睛:此题主要考查了求一个数的绝对值,关键是明确绝对值的性质,一个正数的绝对值等于本身,0的绝对值是0,一个负数的绝对值为其相反数.
    2、A
    【解析】
    根据二次根式的性质对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.
    【详解】
    A、原式=2,所以A选项正确;
    B、原式=4-3=,所以B选项错误;
    C、原式==3,所以C选项错误;
    D、原式=,所以D选项错误.
    故选A.
    【点睛】
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    3、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    4、B
    【解析】
    考点:概率公式.
    专题:计算题.
    分析:根据概率的求法,找准两点:
    ①全部情况的总数;
    ②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,
    故概率为2/ 6 ="1/" 3 .
    故选B.
    点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .
    5、C
    【解析】
    ∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
    故选C.
    考点:抛物线与x轴的交点.
    6、B
    【解析】
    根据题意去设所进乌梅的数量为,根据前后一共获利元,列出方程,求出x值即可.
    【详解】
    解:设小李所进甜瓜的数量为,根据题意得:

    解得:,
    经检验是原方程的解.
    答:小李所进甜瓜的数量为200kg.
    故选:B.
    【点睛】
    本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.
    7、D
    【解析】
    根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
    【详解】
    解:A、B两项不是同类项,所以不能合并,故A、B错误,
    C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
    【点睛】
    本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
    8、B
    【解析】
    原式利用减法法则变形,计算即可求出值.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
    9、B
    【解析】
    试题解析:在菱形中,,,所以,,在中,,
    因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.

    10、A
    【解析】
    根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.
    【详解】
    由表中数据可知,出现“和为7”的概率为0.33.
    故选A.
    【点睛】
    本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    试题解析:∵四边形ABCD是矩形,
    ∵AE⊥BD,

    ∴△ABE∽△ADB,
    ∵E是BC的中点,



    过F作FG⊥BC于G,




    故答案为
    12、15π.
    【解析】
    试题分析:∵OB=BC=3,OA=4,由勾股定理,AB=5,侧面展开图的面积为:×6π×5=15π.故答案为15π.
    考点:圆锥的计算.
    13、
    【解析】
    试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.
    考点:二元一次方程组的应用
    14、6
    【解析】
    根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解.
    【详解】
    解:正6边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,
    ∴边长为6的正六边形外接圆半径是6,故答案为:6.
    【点睛】
    本题考查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键.
    15、2或2.
    【解析】
    解:本题有两种情形:
    (2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;

    (2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.

    故答案为2或2.
    点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
    16、18 1
    【解析】
    有四个边长均为1的正六边形,采用方式1拼接,利用4n+2的规律计算;把六个正六边形围着一个正六边按照方式2进行拼接可使周长为8,六边形的个数最多.
    【详解】
    解:有四个边长均为1的正六边形,采用方式1拼接,所得图案的外轮廓的周长为4×4+2=18;
    按下图拼接,图案的外轮廓的周长为18,此时正六边形的个数最多,即n的最大值为1.

    故答案为:18;1.
    【点睛】
    本题考查了正多边形和圆,以及图形的变化类规律总结问题,根据题意,得出规律是解决此题的关键.
    17、
    【解析】
    延长GF与CD交于点D,过点E作交DF于点M,设正方形的边长为,则解直角三角形可得,根据正切的定义即可求得的正切值
    【详解】
    延长GF与CD交于点D,过点E作交DF于点M,

    设正方形的边长为,则
    ,






    故答案为:
    【点睛】
    考查正多边形的性质,锐角三角函数,构造直角三角形是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)详见解析;(2)①详见解析;②.
    【解析】
    (1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;
    (2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;
    ②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.
    【详解】
    解:(1)如图△A′B′C′为所求图形.

    (2)①如图:点P为所求点.
    ②∵△ABP的周长=AB+AP+BP=AB+AP+B''P
    ∴当AP与PB''共线时,△APB的周长有最小值.
    ∴△APB的周长的最小值AB+AB''=+3
    故答案为 +3
    【点睛】
    本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.
    19、(1)详见解析;(1)
    【解析】
    (1)连接OE交DF于点H,由切线的性质得出∠F+∠EHF =90∘,由FD⊥OC得出∠DOH+∠DHO =90∘,依据对顶角的定义得出∠EHF=∠DHO,从而求得∠F=∠DOH,依据∠CBE=∠DOH,从而即可得证;
    (1)依据圆周角定理及其推论得出∠F=∠COE=1∠CBE =30°,求出OD的值,利用锐角三角函数的定义求出OH的值,进一步求得HE的值,利用锐角三角函数的定义进一步求得EF的值.
    【详解】
    (1)证明:连接OE交DF于点H,
    ∵EF是⊙O的切线,OE是⊙O的半径,
    ∴OE⊥EF.
    ∴∠F+∠EHF=90°.
    ∵FD⊥OC,
    ∴∠DOH+∠DHO=90°.
    ∵∠EHF=∠DHO,
    ∴∠F=∠DOH.
    ∵∠CBE=∠DOH,

    (1)解:∵∠CBE=15°,
    ∴∠F=∠COE=1∠CBE=30°.
    ∵⊙O的半径是,点D是OC中点,
    ∴.
    在Rt△ODH中,cos∠DOH=,
    ∴OH=1.
    ∴.
    在Rt△FEH中,


    【点睛】
    本题主要考查切线的性质及直角三角形的性质、圆周角定理及三角函数的应用,掌握圆周角定理和切线的性质是解题的关键.
    20、(1)12(2)y=(0<x<5)(3)或
    【解析】
    试题分析:(1)过点A作AH⊥BC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;
    (2)先证明△BPD∽△BAC,得到=,再根据 ,代入相关的量即可得;
    (3)分情况进行讨论即可得.
    试题解析:(1)过点A作AH⊥BC于点H ,则∠AHB=90°,∴cosB= ,
    ∵cosB=,AB=5,∴BH=4,∴AH=3,
    ∵AB=AC,∴BC=2BH=8,
    ∴S△ABC=×8×3=12

    (2)∵PB=PD,∴∠B=∠PDB,
    ∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,
    ∴△BPD∽△BAC,
    ∴ ,
    即,
    解得=,
    ∴ ,
    ∴ ,
    解得y=(0<x<5);
    (3)∠APD<90°,
    过C作CE⊥AB交BA延长线于E,可得cos∠CAE= ,
    ①当∠ADP=90°时,
    cos∠APD=cos∠CAE=,
    即 ,
    解得x=;
    ②当∠PAD=90°时,

    解得x=,
    综上所述,PB=或.
    【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.
    21、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
    【解析】
    (1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
    (2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
    (3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
    【详解】
    (1)设抛物线解析式为,
    当时,,
    点的坐标为,
    将点坐标代入解析式得,
    解得:,
    抛物线的函数表达式为;
    (2)由抛物线的对称性得,

    当时,,
    矩形的周长




    当时,矩形的周长有最大值,最大值为;
    (3)如图,

    当时,点、、、的坐标分别为、、、,
    矩形对角线的交点的坐标为,
    直线平分矩形的面积,
    点是和的中点,

    由平移知,
    是的中位线,

    所以抛物线向右平移的距离是1个单位.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
    22、 (1) EH2+CH2=AE2;(2)见解析.
    【解析】
    分析:(1)如图1,过E作EM⊥AD于M,由四边形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通过△DME≌△DHE,根据全等三角形的性质得到EM=EH,DM=DH,等量代换得到AM=CH,根据勾股定理即可得到结论;
    (2)如图2,根据菱形的性质得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等边三角形,由等边三角形的性质得到∠EDG=60°,推出△DAE≌△DCG,根据全等三角形的性质即可得到结论.
    详解:
    (1)EH2+CH2=AE2,
    如图1,过E作EM⊥AD于M,
    ∵四边形ABCD是菱形,
    ∴AD=CD,∠ADE=∠CDE,
    ∵EH⊥CD,
    ∴∠DME=∠DHE=90°,
    在△DME与△DHE中,

    ∴△DME≌△DHE,
    ∴EM=EH,DM=DH,
    ∴AM=CH,
    在Rt△AME中,AE2=AM2+EM2,
    ∴AE2=EH2+CH2;
    故答案为:EH2+CH2=AE2;
    (2)如图2,
    ∵菱形ABCD,∠ADC=60°,
    ∴∠BDC=∠BDA=30°,DA=DC,
    ∵EH⊥CD,
    ∴∠DEH=60°,
    在CH上截取HG,使HG=EH,
    ∵DH⊥EG,∴ED=DG,
    又∵∠DEG=60°,
    ∴△DEG是等边三角形,
    ∴∠EDG=60°,
    ∵∠EDG=∠ADC=60°,
    ∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,
    ∴∠ADE=∠CDG,
    在△DAE与△DCG中,

    ∴△DAE≌△DCG,
    ∴AE=GC,
    ∵CH=CG+GH,
    ∴CH=AE+EH.

    点睛:考查了全等三角形的判定和性质、菱形的性质、旋转的性质、等边三角形的判定和性质,解题的关键是正确的作出辅助线.
    23、(1)DP=;(2)①;②.
    【解析】
    (1)先判断出△ADP是等边三角形,进而得出DP=AP,即可得出结论;
    (2)①先求出GH= 2,进而求出DG,再得出DH,即可得出结论;
    ②分两种情况,利用三角形的面积建立方程求解即可得出结论.
    【详解】
    解:(1)∵A(0,4),
    ∴OA=4,
    ∵P(t,0),
    ∴OP=t,
    ∵△ABD是由△AOP旋转得到,
    ∴△ABD≌△AOP,
    ∴AP=AD,∠DAB=∠PAO,
    ∴∠DAP=∠BAO=60°,
    ∴△ADP是等边三角形,
    ∴DP=AP,
    ∵ ,
    ∴,
    ∴;
    (2)①当t>0时,如图1,BD=OP=t,

    过点B,D分别作x轴的垂线,垂足于F,H,过点B作x轴的平行线,分别交y轴于点E,交DH于点G,
    ∵△OAB为等边三角形,BE⊥y轴,
    ∴∠ABP=30°,AP=OP=2,
    ∵∠ABD=90°,
    ∴∠DBG=60°,
    ∴DG=BD•sin60°= ,
    ∵GH=OE=2,
    ∴ ,
    ∴ ;
    ②当t≤0时,分两种情况:
    ∵点D在x轴上时,如图2

    在Rt△ABD中,,
    (1)当 时,如图3,BD=OP=-t,,

    ∴,
    ∴,
    ∴或,
    ∴ 或,
    (2)当 时,如图4,

    BD=OP=-t,,
    ∴,

    ∴或(舍)
    ∴ .
    【点睛】
    此题是几何变换综合题,主要考查了全等三角形的判定和性质,旋转的性质,三角形的面积公式以及解直角三角形,正确作出辅助线是解决本题的关键.
    24、(1)10、0.28、1;(2)见解析;(3)6.4本;(4)264名;
    【解析】
    (1)根据百分比=计算即可;
    (2)求出a组人数,画出直方图即可;
    (3)根据平均数的定义计算即可;
    (4)利用样本估计总体的思想解决问题即可;
    【详解】
    (1)a=50×0.2=10、b=14÷50=0.28、c=50÷50=1;
    (2)补全图形如下:

    (3)所有被调查学生课外阅读的平均本数==6.4(本)
    (4)该校八年级共有600名学生,该校八年级学生课外阅读7本和8本的总人数有600×=264(名).
    【点睛】
    本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.

    相关试卷

    2023年广东省梅州市中考数学试卷(含解析): 这是一份2023年广东省梅州市中考数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2016年广东省梅州市中考数学试卷(含解析版): 这是一份2016年广东省梅州市中考数学试卷(含解析版),共23页。试卷主要包含了选择题,填空题,解答下列各题等内容,欢迎下载使用。

    2014年广东省梅州市中考数学试卷(含解析版): 这是一份2014年广东省梅州市中考数学试卷(含解析版),共21页。试卷主要包含了选择题,填空题,解答下列各题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map