年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析

    广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析第1页
    广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析第2页
    广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析

    展开

    这是一份广东省中大附中达标名校2021-2022学年中考数学适应性模拟试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,在中,,,,则的值是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC的(  )
    A.三条高的交点 B.重心 C.内心 D.外心
    2.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

    A.2 B. C. D.2
    3.如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是(  )

    A.3 B.4 C.5 D.6
    4.如图,在△ABC中,DE∥BC,若,则等于( )

    A. B. C. D.
    5.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为(  )

    A. B. C. D.
    6.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
    沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )

    A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
    7.的相反数是 ( )
    A. B. C.3 D.-3
    8.在中,,,,则的值是( )
    A. B. C. D.
    9.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是(  )

    A. B. C. D.
    10.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是(  )

    A.50π﹣48 B.25π﹣48 C.50π﹣24 D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知在平行四边形ABCD中,E是边AB的中点,F在边AD上,且AF:FD=2:1,如果=,=,那么=_____.

    12.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.
    13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.
    《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”
    译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”
    设每头牛值金x两,每只羊值金y两,可列方程组为_____.

    14.如图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:
    ①;②;③;④不等式的解集是或.
    其中正确结论的序号是__________.

    15.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
    x

    -5
    -4
    -3
    -2
    -1

    y

    3
    -2
    -5
    -6
    -5

    则关于x的一元二次方程ax2+bx+c=-2的根是______.
    16.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.

    17.计算(-2)×3+(-3)=_______________.
    三、解答题(共7小题,满分69分)
    18.(10分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:
    问题1:单价
    该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?
    问题2:投放方式
    该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.
    19.(5分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
    (1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)
    (2)当每辆车的日租金为多少元时,每天的净收入最多?
    20.(8分)解方程:=1.
    21.(10分)如图,小华和同伴在春游期间,发现在某地小山坡的点E处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE的长度,小华站在点B的位置,让同伴移动平面镜至点C处,此时小华在平面镜内可以看到点E,且BC=2.7米,CD=11.5米,∠CDE=120°,已知小华的身高为1.8米,请你利用以上的数据求出DE的长度.(结果保留根号)

    22.(10分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.

    23.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示:
    品名
    猕猴桃
    芒果
    批发价元千克
    20
    40
    零售价元千克
    26
    50
    他购进的猕猴桃和芒果各多少千克?
    如果猕猴桃和芒果全部卖完,他能赚多少钱?
    24.(14分)如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
    (1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
    (2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
    (3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
    ①求∠CAM的度数;
    ②当FH=,DM=4时,求DH的长.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.
    【详解】
    ∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,
    ∴凳子应放在△ABC的三条垂直平分线的交点最适当.
    故选D.
    【点睛】
    本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养.想到要使凳子到三个人的距离相等是正确解答本题的关键.
    2、C
    【解析】
    由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.
    【详解】
    解:∵OP平分∠AOB,∠AOB=60°,
    ∴∠AOP=∠COP=30°,
    ∵CP∥OA,
    ∴∠AOP=∠CPO,
    ∴∠COP=∠CPO,
    ∴OC=CP=2,
    ∵∠PCE=∠AOB=60°,PE⊥OB,
    ∴∠CPE=30°,
    ∴CE=CP=1,
    ∴PE=,
    ∴OP=2PE=2,
    ∵PD⊥OA,点M是OP的中点,
    ∴DM=OP=.
    故选C.
    考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.
    3、C
    【解析】
    根据等腰三角形的性质可得BE=BC=2,再根据三角形中位线定理可求得BD、DE长,根据三角形周长公式即可求得答案.
    【详解】
    解:∵在△ABC中,AB=AC=3,AE平分∠BAC,
    ∴BE=CE=BC=2,
    又∵D是AB中点,
    ∴BD=AB=,
    ∴DE是△ABC的中位线,
    ∴DE=AC=,
    ∴△BDE的周长为BD+DE+BE=++2=5,
    故选C.
    【点睛】
    本题考查了等腰三角形的性质、三角形中位线定理,熟练掌握三角形中位线定理是解题的关键.
    4、C
    【解析】
    试题解析::∵DE∥BC,
    ∴,
    故选C.
    考点:平行线分线段成比例.
    5、A
    【解析】
    先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
    【详解】
    解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
    ∴BD=5,

    在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
    ∴BF2=32+(4-BF)2,
    解得BF=,
    ∴AF=4-=.
    过G作GH∥BF,交BD于H,
    ∴∠FBD=∠GHD,∠BGH=∠FBG,
    ∵FB=FD,
    ∴∠FBD=∠FDB,
    ∴∠FDB=∠GHD,
    ∴GH=GD,
    ∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
    又∵∠FBG=∠BGH,∠FBG=∠GBH,
    ∴BH=GH,
    设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
    ∵GH∥FB,
    ∴ =,即=,
    解得x=.
    故选A.
    【点睛】
    本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
    6、C
    【解析】
    如图所示,连接CM,
    ∵M是AB的中点,
    ∴S△ACM=S△BCM=S△ABC,
    开始时,S△MPQ=S△ACM=S△ABC;
    由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
    结束时,S△MPQ=S△BCM=S△ABC.
    △MPQ的面积大小变化情况是:先减小后增大.故选C.
    7、B
    【解析】
    先求的绝对值,再求其相反数:
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;
    相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此的相反数是.故选B.
    8、D
    【解析】
    首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.
    【详解】
    ∵∠C=90°,BC=1,AB=4,
    ∴,
    ∴,
    故选:D.
    【点睛】
    本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.
    9、C
    【解析】
    试题分析:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴的图象经过第一、二、四象限,反比例函数图象在第一三象限,只有C选项图象符合.故选C.
    考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.
    10、B
    【解析】
    设以AB、AC为直径作半圆交BC于D点,连AD,如图,

    ∴AD⊥BC,
    ∴BD=DC=BC=8,
    而AB=AC=10,CB=16,
    ∴AD===6,
    ∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,
    =π•52﹣•16•6,
    =25π﹣1.
    故选B.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    根据
    ,只要求出、
    即可解决问题;
    【详解】
    ∵四边形是平行四边形,







    .
    故答案为.
    【点睛】
    本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出、.
    12、
    【解析】
    mn(n-m)-n(m-n)= mn(n-m)+n(n-m)=n(n-m)(m+1),
    故答案为n(n-m)(m+1).
    13、
    【解析】
    试题分析:根据“5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.”列方程组即可.
    考点:二元一次方程组的应用
    14、②③④
    【解析】
    分析:根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(-2,m)、B(1,n)代入y=中得到-2m=n故②正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<-2或0<x<1,故④正确.
    详解:由图象知,k1<0,k2<0,
    ∴k1k2>0,故①错误;
    把A(-2,m)、B(1,n)代入y=中得-2m=n,
    ∴m+n=0,故②正确;
    把A(-2,m)、B(1,n)代入y=k1x+b得

    ∴,
    ∵-2m=n,
    ∴y=-mx-m,
    ∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,
    ∴P(-1,0),Q(0,-m),
    ∴OP=1,OQ=m,
    ∴S△AOP=m,S△BOQ=m,
    ∴S△AOP=S△BOQ;故③正确;
    由图象知不等式k1x+b>的解集是x<-2或0<x<1,故④正确;
    故答案为:②③④.
    点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键.
    15、x1=-4,x1=2
    【解析】
    解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.
    点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.
    16、(15﹣5)
    【解析】
    先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.
    【详解】
    ∵P为AB的黄金分割点(AP>PB),
    ∴AP=AB=×10=5﹣5,
    ∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.
    故答案为(15﹣5).
    【点睛】
    本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.
    17、-9
    【解析】
    根据有理数的计算即可求解.
    【详解】
    (-2)×3+(-3)=-6-3=-9
    【点睛】
    此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.

    三、解答题(共7小题,满分69分)
    18、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1
    【解析】
    问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,
    依题意得50x+50(x+10)=7500,
    解得x=70,
    ∴x+10=80,
    答:A、B两型自行车的单价分别是70元和80元;
    问题2:由题可得,×1000+×1000=10000,
    解得a=1,
    经检验:a=1是分式方程的解,
    故a的值为1.
    19、(1)每辆车的日租金至少应为25元;(2)当每辆车的日租金为175元时,每天的净收入最多是5025元.
    【解析】
    试题分析:(1)观光车全部租出每天的净收入=出租自行车的总收入﹣管理费,由净收入为正列出不等式求解即可;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.
    试题解析:(1)由题意知,若观光车能全部租出,则0<x≤100,
    由50x﹣1100>0,
    解得x>22,
    又∵x是5的倍数,
    ∴每辆车的日租金至少应为25元;
    (2)设每辆车的净收入为y元,
    当0<x≤100时,y1=50x﹣1100,
    ∵y1随x的增大而增大,
    ∴当x=100时,y1的最大值为50×100﹣1100=3900;
    当x>100时,
    y2=(50﹣)x﹣1100
    =﹣x2+70x﹣1100
    =﹣(x﹣175)2+5025,
    当x=175时,y2的最大值为5025,
    5025>3900,
    故当每辆车的日租金为175元时,每天的净收入最多是5025元.
    考点:二次函数的应用.
    20、x=1
    【解析】
    方程两边同乘转化为整式方程,解整式方程后进行检验即可得.
    【详解】
    解:方程两边同乘得:

    整理,得,
    解这个方程得,,
    经检验,是增根,舍去,
    所以,原方程的根是.
    【点睛】
    本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.
    21、DE的长度为6+1.
    【解析】
    根据相似三角形的判定与性质解答即可.
    【详解】
    解:过E作EF⊥BC,

    ∵∠CDE=120°,
    ∴∠EDF=60°,
    设EF为x,DF=x,
    ∵∠B=∠EFC=90°,
    ∵∠ACB=∠ECD,
    ∴△ABC∽△EFC,
    ∴,
    即,
    解得:x=9+2,
    ∴DE==6+1,
    答:DE的长度为6+1.
    【点睛】
    本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
    22、见解析.
    【解析】
    先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
    【详解】
    ∵AE为△ABC的角平分线,CH⊥AE,
    ∴△ACF是等腰三角形,
    ∴AF=AC,HF=CH,
    ∵AD为△ABC的中线,
    ∴DH是△BCF的中位线,
    ∴DH=BF.
    【点睛】
    本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
    23、(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.
    【解析】
    设购进猕猴桃x千克,购进芒果y千克,由总价单价数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x,y的二元一次方程组,解之即可得出结论;
    根据利润销售收入成本,即可求出结论.
    【详解】
    设购进猕猴桃x千克,购进芒果y千克,
    根据题意得:,
    解得:.
    答:购进猕猴桃20千克,购进芒果30千克.
    元.
    答:如果猕猴桃和芒果全部卖完,他能赚420元钱.
    【点睛】
    本题考查了二元一次方程组的应用,解题的关键是:找准等量关系,正确列出二元一次方程组;根据数量关系,列式计算.
    24、(1)证明见解析;(2)结论:成立.理由见解析;(3)①30°,②1+.
    【解析】
    (1)只要证明AB=ED,AB∥ED即可解决问题;(2)成立.如图2中,过点M作MG∥DE交CE于G.由四边形DMGE是平行四边形,推出ED=GM,且ED∥GM,由(1)可知AB=GM,AB∥GM,可知AB∥DE,AB=DE,即可推出四边形ABDE是平行四边形;
    (3)①如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MI⊥AC,即可解决问题;②设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DF∥AB,推出 ,可得,解方程即可;
    【详解】
    (1)证明:如图1中,

    ∵DE∥AB,
    ∴∠EDC=∠ABM,
    ∵CE∥AM,
    ∴∠ECD=∠ADB,
    ∵AM是△ABC的中线,且D与M重合,
    ∴BD=DC,
    ∴△ABD≌△EDC,
    ∴AB=ED,∵AB∥ED,
    ∴四边形ABDE是平行四边形.
    (2)结论:成立.理由如下:
    如图2中,过点M作MG∥DE交CE于G.

    ∵CE∥AM,
    ∴四边形DMGE是平行四边形,
    ∴ED=GM,且ED∥GM,
    由(1)可知AB=GM,AB∥GM,
    ∴AB∥DE,AB=DE,
    ∴四边形ABDE是平行四边形.
    (3)①如图3中,取线段HC的中点I,连接MI,

    ∵BM=MC,
    ∴MI是△BHC的中位线,
    ∴MI∥BH,MI=BH,
    ∵BH⊥AC,且BH=AM.
    ∴MI=AM,MI⊥AC,
    ∴∠CAM=30°.
    ②设DH=x,则AH=x,AD=2x,
    ∴AM=4+2x,
    ∴BH=4+2x,
    ∵四边形ABDE是平行四边形,
    ∴DF∥AB,
    ∴,
    ∴,
    解得x=1+或1﹣(舍弃),
    ∴DH=1+.
    【点睛】
    本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题.

    相关试卷

    长沙市重点达标名校2021-2022学年中考数学适应性模拟试题含解析:

    这是一份长沙市重点达标名校2021-2022学年中考数学适应性模拟试题含解析,共18页。试卷主要包含了如图图形中是中心对称图形的是,化简的结果是,- 的绝对值是等内容,欢迎下载使用。

    广东省广州白云区达标名校2021-2022学年中考数学适应性模拟试题含解析:

    这是一份广东省广州白云区达标名校2021-2022学年中考数学适应性模拟试题含解析,共24页。试卷主要包含了是两个连续整数,若,则分别是.,对于二次函数,下列说法正确的是等内容,欢迎下载使用。

    2021-2022学年浙江省杭州地区达标名校中考数学适应性模拟试题含解析:

    这是一份2021-2022学年浙江省杭州地区达标名校中考数学适应性模拟试题含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,已知点A,-3的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map