广西省崇左市天等县2022年中考数学对点突破模拟试卷含解析
展开
这是一份广西省崇左市天等县2022年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了下列计算正确的是,如图,空心圆柱体的左视图是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
2.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为
A.6 B.8 C.10 D.12
3.如图,在中,面积是16,的垂直平分线分别交边于点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
A.6 B.8 C.10 D.12
4.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于( )
A.60° B.35° C.25° D.20°
5.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是( )
A. B.
C. D.
6.下表是某校合唱团成员的年龄分布.
年龄/岁
13
14
15
16
频数
5
15
x
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.众数、中位数 B.平均数、中位数 C.平均数、方差 D.中位数、方差
7.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( )
A.2 B.2 C.3 D.
8.下列计算正确的是( )
A. B. C. D.
9.如图,空心圆柱体的左视图是( )
A. B. C. D.
10.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )
A.众数 B.平均数 C.中位数 D.方差
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.
12.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.
13.如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30°,迎水坡的坡度为1∶2,那么坝底的长度等于________米(结果保留根号)
14.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.
15.因式分解:3a3﹣6a2b+3ab2=_____.
16.规定一种新运算“*”:a*b=a-b,则方程x*2=1*x的解为________.
17.化简的结果为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
19.(5分)如图,已知∠AOB=45°,AB⊥OB,OB=1.
(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);
(1)若M为AO的中点,求AM的长.
20.(8分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
(1)求证:四边形ABEF是平行四边形;
(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.
21.(10分)某校为选拔一名选手参加“美丽邵阳,我为家乡做代言”主题演讲比赛,经研究,按图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:
项目
选手
服装
普通话
主题
演讲技巧
李明
85
70
80
85
张华
90
75
75
80
结合以上信息,回答下列问题:求服装项目的权数及普通话项目对应扇形的圆心角大小;求李明在选拔赛中四个项目所得分数的众数和中位数;根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽邵阳,我为家乡做代言”主题演讲比赛,并说明理由.
22.(10分)如图,在平面直角坐标系中,抛物线C1经过点A(﹣4,0)、B(﹣1,0),其顶点为.
(1)求抛物线C1的表达式;
(2)将抛物线C1绕点B旋转180°,得到抛物线C2,求抛物线C2的表达式;
(3)再将抛物线C2沿x轴向右平移得到抛物线C3,设抛物线C3与x轴分别交于点E、F(E在F左侧),顶点为G,连接AG、DF、AD、GF,若四边形ADFG为矩形,求点E的坐标.
23.(12分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:
月份(x)
1月
2月
3月
4月
5月
6月
销售量(p)
3.9万台
4.0万台
4.1万台
4.2万台
4.3万台
4.4万台
(1)求p关于x的函数关系式;
(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?
(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.
24.(14分)填空并解答:
某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.
(1)问哪一位“新顾客”是第一个不需要排队的?
分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.
a1
a2
a3
a4
a5
a6
c1
c2
c3
c4
…
到达窗口时刻
0
0
0
0
0
0
1
6
11
16
…
服务开始时刻
0
2
4
6
8
10
12
14
16
18
…
每人服务时长
2
2
2
2
2
2
2
2
2
2
…
服务结束时刻
2
4
6
8
10
12
14
16
18
20
…
根据上述表格,则第 位,“新顾客”是第一个不需要排队的.
(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.
分析:第n个“新顾客”到达窗口时刻为 ,第(n﹣1)个“新顾客”服务结束的时刻为 .
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
∵全班有x名同学,
∴每名同学要送出(x-1)张;
又∵是互送照片,
∴总共送的张数应该是x(x-1)=1.
故选B
考点:由实际问题抽象出一元二次方程.
2、C
【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
【详解】
连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=BC•AD=×4×AD=16,解得AD=8,
∵EF是线段AC的垂直平分线,
∴点C关于直线EF的对称点为点A,
∴AD的长为CM+MD的最小值,
∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.
故选C.
【点睛】
本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
3、C
【解析】
连接AD,AM,由于△ABC是等腰三角形,点D是BC的中点,故,在根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,,推出,故AD的长为BM+MD的最小值,由此即可得出结论.
【详解】
连接AD,MA
∵△ABC是等腰三角形,点D是BC边上的中点
∴
∴
解得
∵EF是线段AC的垂直平分线
∴点A关于直线EF的对称点为点C
∴
∵
∴AD的长为BM+MD的最小值
∴△CDM的周长最短
故选:C.
【点睛】
本题考查了三角形线段长度的问题,掌握等腰三角形的性质、三角形的面积公式、垂直平分线的性质是解题的关键.
4、C
【解析】
先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.
【详解】
∵BC∥DE,
∴∠CBE=∠E=60°,
∵∠A=35°,∠C+∠A=∠CBE,
∴∠C=∠CBE﹣∠C=60°﹣35°=25°,
故选C.
【点睛】
本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
5、C
【解析】
【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
【详解】∵pv=k(k为常数,k>0)
∴p=(p>0,v>0,k>0),
故选C.
【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
6、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
7、A
【解析】
连接BD,交AC于O,
∵正方形ABCD,
∴OD=OB,AC⊥BD,
∴D和B关于AC对称,
则BE交于AC的点是P点,此时PD+PE最小,
∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),
∴此时PD+PE最小,
此时PD+PE=BE,
∵正方形的面积是12,等边三角形ABE,
∴BE=AB=,
即最小值是2,
故选A.
【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.
8、D
【解析】
分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.
解答:解:A、x+x=2x,选项错误;
B、x?x=x2,选项错误;
C、(x2)3=x6,选项错误;
D、正确.
故选D.
9、C
【解析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
从左边看是三个矩形,中间矩形的左右两边是虚线,
故选C.
【点睛】
本题考查了简单几何体的三视图,从左边看得到的图形是左视图.
10、D
【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
【详解】
由于方差能反映数据的稳定性,需要比较这两名学生立定跳远成绩的方差.
故选D.
二、填空题(共7小题,每小题3分,满分21分)
11、220.
【解析】
试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°
考点:内角和定理
点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键
12、(0,0)
【解析】
根据坐标的平移规律解答即可.
【详解】
将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,
那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),
故答案为(0,0).
【点睛】
此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
13、
【解析】
过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线段、的长,然后与相加即可求得的长.
【详解】
如图,作,,垂足分别为点E,F,则四边形是矩形.
由题意得,米,米,,斜坡的坡度为1∶2,
在中,∵,
∴米.
在Rt△DCF中,∵斜坡的坡度为1∶2,
∴,
∴米,
∴(米).
∴坝底的长度等于米.
故答案为.
【点睛】
此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.
14、1.
【解析】
试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.
考点:①平行四边形的性质;②圆内接四边形的性质.
15、3a(a﹣b)1
【解析】
首先提取公因式3a,再利用完全平方公式分解即可.
【详解】
3a3﹣6a1b+3ab1,
=3a(a1﹣1ab+b1),
=3a(a﹣b)1.
故答案为:3a(a﹣b)1.
【点睛】
此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.
16、
【解析】
根据题中的新定义化简所求方程,求出方程的解即可.
【详解】
根据题意得:x-×2=×1-,
x=,
解得:x=,
故答案为x=.
【点睛】
此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.
17、+1
【解析】
利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.
【详解】
原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.
故答案为:+1.
【点睛】
本题考查了二次根式的混合运算,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
三、解答题(共7小题,满分69分)
18、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
【详解】
解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,
解得:b=﹣4,c=3,
∴二次函数的表达式为:y=x2﹣4x+3;
(2)令y=0,则x2﹣4x+3=0,
解得:x=1或x=3,
∴B(3,0),
∴BC=3,
点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
∴P1(0,3+3),P2(0,3﹣3);
②当PB=PC时,OP=OB=3,
∴P3(0,-3);
③当BP=BC时,
∵OC=OB=3
∴此时P与O重合,
∴P4(0,0);
综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);
(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
19、(1)详见解析;(1).
【解析】
(1)以点M为顶点,作∠AMN=∠O即可;
(1)由∠AOB=45°,AB⊥OB,可知△AOB为等腰为等腰直角三角形,根据勾股定理求出OA的长,即可求出AM的值.
【详解】
(1)作图如图所示;
(1)由题知△AOB为等腰Rt△AOB,且OB=1,
所以,AO=OB=1
又M为OA的中点,
所以,AM=1=
【点睛】
本题考查了尺规作图,等腰直角三角形的判定,勾股定理等知识,熟练掌握作一个角等于已知角是解(1)的关键,证明△AOB为等腰为等腰直角三角形是解(1)的关键.
20、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
【解析】
(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
【详解】
(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
∵CA=CE,CB=CF,∴AE=BF.
∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
【点睛】
本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
21、(1)服装项目的权数是10%,普通话项目对应扇形的圆心角是72°;(2)众数是85,中位数是82.5;(3)选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛,理由见解析.
【解析】
(1)根据扇形图用1减去其它项目的权重可求得服装项目的权重,用360度乘以普通话项目的权重即可求得普通话项目对应扇形的圆心角大小;
(2)根据统计表中的数据可以求得李明在选拔赛中四个项目所得分数的众数和中位数;
(3)根据统计图和统计表中的数据可以分别计算出李明和张华的成绩,然后比较大小,即可解答本题.
【详解】
(1)服装项目的权数是:1﹣20%﹣30%﹣40%=10%,
普通话项目对应扇形的圆心角是:360°×20%=72°;
(2)明在选拔赛中四个项目所得分数的众数是85,中位数是:(80+85)÷2=82.5;
(3)李明得分为:85×10%+70×20%+80×30%+85×40%=80.5,
张华得分为:90×10%+75×20%+75×30%+80×40%=78.5,
∵80.5>78.5,
∴李明的演讲成绩好,
故选择李明参加“美丽邵阳,我为家乡做代言”主题演讲比赛.
【点睛】
本题考查了扇形统计图、中位数、众数、加权平均数,明确题意,结合统计表和统计图找出所求问题需要的条件,运用数形结合的思想进行解答是解题的关键.
22、(1)y;(2);(3)E(,0).
【解析】
(1)根据抛物线C1的顶点坐标可设顶点式将点B坐标代入求解即可;
(2)由抛物线C1绕点B旋转180°得到抛物线C2知抛物线C2的顶点坐标,可设抛物线C2的顶点式,根据旋转后抛物线C2开口朝下,且形状不变即可确定其表达式;
(3)作GK⊥x轴于G,DH⊥AB于H,由题意GK=DH=3,AH=HB=EK=KF,结合矩形的性质利用两组对应角分别相等的两个三角形相似可证△AGK∽△GFK,由其对应线段成比例的性质可知AK长,结合A、B点坐标可知BK、BE、OE长,可得点E坐标.
【详解】
解:(1)∵抛物线C1的顶点为,
∴可设抛物线C1的表达式为y,
将B(﹣1,0)代入抛物线解析式得:,
∴,
解得:a,
∴抛物线C1的表达式为y,即y.
(2)设抛物线C2的顶点坐标为
∵抛物线C1绕点B旋转180°,得到抛物线C2,即点与点关于点B(﹣1,0)对称
∴抛物线C2的顶点坐标为()
可设抛物线C2的表达式为y
∵抛物线C2开口朝下,且形状不变
∴抛物线C2的表达式为y,即.
(3)如图,作GK⊥x轴于G,DH⊥AB于H.
由题意GK=DH=3,AH=HB=EK=KF,
∵四边形AGFD是矩形,
∴∠AGF=∠GKF=90°,
∴∠AGK+∠KGF=90°,∠KGF+∠GFK=90°,
∴∠AGK=∠GFK.
∵∠AKG=∠FKG=90°,
∴△AGK∽△GFK,
∴,
∴,
∴AK=6,
,
∴BE=BK﹣EK=3,
∴OE,
∴E(,0).
【点睛】
本题考查了二次函数与几何的综合,涉及了待定系数法求二次函数解析式、矩形的性质、相似三角形的判定和性质、旋转变换的性质,灵活的利用待定系数法求二次函数解析式是解前两问的关键,熟练掌握相似三角形的判定与性质是解(3)的关键.
23、(1)p=0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m的值为1.
【解析】
(1)直接利用待定系数法求一次函数解析式即可;
(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;
(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.
【详解】
(1)设p=kx+b,
把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,
得:
解得:,
∴p=0.1x+3.8;
(2)设该品牌手机在去年第x个月的销售金额为w万元,
w=(﹣50x+2600)(0.1x+3.8)
=﹣5x2+70x+9880
=﹣5(x﹣7)2+10125,
当x=7时,w最大=10125,
答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;
(3)当x=12时,y=100,p=5,
1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;
1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;
∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,
解得:m1%=(舍去),m2%=,
∴m=1,
答:m的值为1.
【点睛】
此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.
24、(1)5;(2)5n﹣4,na+6a.
【解析】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.
【详解】
(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;
故答案为:5;
(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,
∴第n个“新顾客”到达窗口时刻为5n﹣4,
由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,
∴第n个“新顾客”服务开始的时间为(6+n)a,
∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,
∵每a分钟办理一个客户,
∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,
故答案为:5n﹣4,na+6a.
【点睛】
本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.
相关试卷
这是一份2023-2024学年广西省崇左市天等县数学九上期末联考模拟试题含答案,共11页。试卷主要包含了如图,在中,,,,则等于等内容,欢迎下载使用。
这是一份2022-2023学年广西省崇左市中考数学专项提升仿真模拟试题(3月4月)含解析,共45页。试卷主要包含了选一选,填 空 题,解 答 题等内容,欢迎下载使用。
这是一份2022-2023学年广西省崇左市中考数学专项提升仿真模拟试题(一模二模)含解析,共53页。试卷主要包含了选一选,解 答 题等内容,欢迎下载使用。