搜索
    上传资料 赚现金
    英语朗读宝

    河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析

    河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析第1页
    河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析第2页
    河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析

    展开

    这是一份河北省秦皇岛市青龙满族自治县2021-2022学年中考数学猜题卷含解析,共20页。试卷主要包含了已知一组数据等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为(  )
    A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
    2.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    3.下列计算中,错误的是( )
    A.; B.; C.; D..
    4.某公园里鲜花的摆放如图所示,第①个图形中有3盆鲜花,第②个图形中有6盆鲜花,第③个图形中有11盆鲜花,……,按此规律,则第⑦个图形中的鲜花盆数为()

    A.37 B.38 C.50 D.51
    5.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    6.若x﹣2y+1=0,则2x÷4y×8等于(  )
    A.1 B.4 C.8 D.﹣16
    7.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
    A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
    8.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是( )

    A.π B. C. D.
    9.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )
    A.m<1 B.m>﹣1 C.m>1 D.m<﹣1
    10.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为(  )

    A.6 B.7 C.8 D.10
    二、填空题(共7小题,每小题3分,满分21分)
    11.若分式的值为正数,则x的取值范围_____.
    12.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
    13.一个凸边形的内角和为720°,则这个多边形的边数是__________________
    14.如果x3nym+4与﹣3x6y2n是同类项,那么mn的值为_____.
    15.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.

    16.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.
    17.如图为两正方形ABCD、CEFG和矩形DFHI的位置图,其中D,A两点分别在CG、BI上,若AB=3,CE=5,则矩形DFHI的面积是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
    (1)求抛物线解析式并求出点D的坐标;
    (2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
    (3)当△CPE是等腰三角形时,请直接写出m的值.

    19.(5分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.

    20.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.
    (1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?
    (2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.
    21.(10分)问题提出
    (1)如图①,在矩形ABCD中,AB=2AD,E为CD的中点,则∠AEB   ∠ACB(填“>”“<”“=”);
    问题探究
    (2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;
    问题解决
    (3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.

    22.(10分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
    (1)求抛物线的表达式及点B的坐标;
    (2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
    (3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
    23.(12分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
    (1)⊙O的半径为6,OP=1.
    ①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
    ②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
    (2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
    (3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.

    24.(14分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    3382亿=338200000000=3.382×1.
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、B
    【解析】
    首先解出各个不等式的解集,然后求出这些解集的公共部分即可.
    【详解】
    解:由x﹣2≥0,得x≥2,
    由x+1<0,得x<﹣1,
    所以不等式组无解,
    故选B.
    【点睛】
    解不等式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
    3、B
    【解析】
    分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.
    详解:A.,故A正确;
    B.,故B错误;
    C..故C正确;
    D.,故D正确;
    故选B.
    点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.
    4、D
    【解析】
    试题解析:
    第①个图形中有 盆鲜花,
    第②个图形中有盆鲜花,
    第③个图形中有盆鲜花,

    第n个图形中的鲜花盆数为
    则第⑥个图形中的鲜花盆数为
    故选C.
    5、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    6、B
    【解析】
    先把原式化为2x÷22y×23的形式,再根据同底数幂的乘法及除法法则进行计算即可.
    【详解】
    原式=2x÷22y×23,
    =2x﹣2y+3,
    =22,
    =1.
    故选:B.
    【点睛】
    本题考查的是同底数幂的乘法及除法运算,根据题意把原式化为2x÷22y×23的形式是解答此题的关键.
    7、D
    【解析】
    分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
    平均数为(12+5+9+5+14)÷5=9,故选项A正确;
    重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
    5出现了2次,最多,∴众数是5,故选项C正确;
    极差为:14﹣5=9,故选项D错误.
    故选D
    8、B
    【解析】
    连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.
    【详解】
    解:连接OB,OC.

    ∵∠BOC=2∠BAC=60°,
    ∵OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=1,
    ∴的长=,
    故选B.
    【点睛】
    考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
    9、C
    【解析】
    试题解析:关于的一元二次方程没有实数根,

    解得:
    故选C.
    10、C
    【解析】
    ∵∠ACB=90°,D为AB的中点,AB=6,
    ∴CD=AB=1.
    又CE=CD,
    ∴CE=1,
    ∴ED=CE+CD=2.
    又∵BF∥DE,点D是AB的中点,
    ∴ED是△AFB的中位线,
    ∴BF=2ED=3.
    故选C.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x>1
    【解析】
    试题解析:由题意得:
    >0,
    ∵-6<0,
    ∴1-x<0,
    ∴x>1.
    12、y3<y1<y1
    【解析】
    根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
    【详解】
    解:k=-1<0,
    ∴在每个象限,y随x的增大而增大,
    ∵-3<-1<0,
    ∴0<y1<y1.
    又∵1>0
    ∴y3<0
    ∴y3<y1<y1
    故答案为:y3<y1<y1
    【点睛】
    本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
    13、1
    【解析】
    设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.
    【详解】
    解:设这个多边形的边数是n
    根据多边形内角和公式可得
    解得.
    故答案为:1.
    【点睛】
    此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.
    14、0
    【解析】
    根据同类项的特点,可知3n=6,解得n=2,m+4=2n,解得m=0,所以mn=0.
    故答案为0
    点睛:此题主要考查了同类项,解题关键是会判断同类项,注意:同类项中含有相同的字母,相同字母的指数相同.
    15、8
    【解析】
    根据反比例函数的性质结合点的坐标利用勾股定理解答.
    【详解】
    解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.
    给答案为:8.
    【点睛】
    此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.
    16、  
    【解析】
    试题分析:将4400000用科学记数法表示为:4.4×1.
    故答案为4.4×1.
    考点:科学记数法—表示较大的数.
    17、
    【解析】
    由题意先求出DG和FG的长,再根据勾股定理可求得DF的长,然后再证明△DGF∽△DAI,依据相似三角形的性质可得到DI的长,最后依据矩形的面积公式求解即可.
    【详解】
    ∵四边形ABCD、CEFG均为正方形,
    ∴CD=AD=3,CG=CE=5,
    ∴DG=2,
    在Rt△DGF中, DF==,
    ∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,
    ∴∠FDG=∠IDA.
    又∵∠DAI=∠DGF,
    ∴△DGF∽△DAI,
    ∴,即,解得:DI=,
    ∴矩形DFHI的面积是=DF•DI=,
    故答案为:.
    【点睛】
    本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
    【解析】
    (1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
    (2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
    (3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
    【详解】
    (1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
    ∴抛物线的解析式为y=﹣x2+2x+3;
    把C(0,3)代入y=﹣x+n,解得n=3,
    ∴直线CD的解析式为y=﹣x+3,
    解方程组,解得
    或,
    ∴D点坐标为(,);
    (2)存在.
    设P(m,﹣m2+2m+3),则E(m,﹣m+3),
    ∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
    ∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
    当m=时,△CDP的面积存在最大值,最大值为;
    (3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
    当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
    当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
    综上所述,m的值为或或.

    【点睛】
    本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
    19、
    【解析】
    试题分析:按照解一元一次不等式的步骤解不等式即可.
    试题解析:,
    ,
    .
    解集在数轴上表示如下

    点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
    20、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
    【解析】
    (1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;
    (2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.
    【详解】
    解析:(1)设购买A种花木x棵,B种花木y棵,
    根据题意,得:,解得:,
    答:购买A种花木40棵,B种花木60棵;
    (2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,
    根据题意,得:100﹣a≥a,解得:a≤50,
    设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,
    ∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,
    答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.
    考点:一元一次不等式的应用;二元一次方程组的应用.
    21、(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)4米.
    【解析】
    (1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小
    (2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;
    (3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.
    【详解】
    解:(1)∠AEB>∠ACB,理由如下:

    如图1,过点E作EF⊥AB于点F,
    ∵在矩形ABCD中,AB=2AD,E为CD中点,
    ∴四边形ADEF是正方形,
    ∴∠AEF=45°,
    同理,∠BEF=45°,
    ∴∠AEB=90°.
    而在直角△ABC中,∠ABC=90°,
    ∴∠ACB<90°,
    ∴∠AEB>∠ACB.
    故答案为:>;
    (2)当点P位于CD的中点时,∠APB最大,理由如下:
    假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,

    在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,
    ∵∠AFB是△EFB的外角,
    ∴∠AFB>∠AEB,
    ∵∠AFB=∠APB,
    ∴∠APB>∠AEB,
    故点P位于CD的中点时,∠APB最大:
    (3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,

    以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,
    由题意知DP=OQ=,
    ∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,
    BD=11.6米, AB=3米,CD=EF=1.6米,
    ∴OA=11.6+3﹣1.6=13米,
    ∴DP=米,
    即小刚与大楼AD之间的距离为4米时看广告牌效果最好.
    【点睛】
    本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.
    22、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
    (2)y的取值范围是﹣3≤y<1.
    (2)b的取值范围是﹣<b<.
    【解析】
    (1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
    【详解】
    (1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
    令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
    (2)y=-2x-2=-3.
    ∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
    ∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
    (2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
    当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
    由函数图象可知;b的取值范围是:-2<b<.
    【点睛】
    本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
    23、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.
    【解析】
    【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;
    ②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;
    (2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;
    (3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.
    【详解】(1)①如图1所示:连接OA、OB、OP,

    ∵OA=OB,P为AB的中点,
    ∴OP⊥AB,
    ∵在△PBO中,由勾股定理得:PB==2,
    ∴PA=PB=2,
    ∴⊙O的“幂值”=2×2=20,
    故答案为:20;
    ②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:
    如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,

    ∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
    ∴△APA′∽△B′PB,
    ∴,
    ∴PA•PB=PA′•PB′=20,
    ∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;
    (2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,

    ∵AO=OB,PO⊥AB,
    ∴AP=PB,
    ∴点P关于⊙O的“幂值”=AP•PB=PA2,
    在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
    ∴关于⊙O的“幂值”=r2﹣d2,
    故答案为:点P关于⊙O的“幂值”为r2﹣d2;
    (3)如图1所示:过点C作CP⊥AB,

    ∵CP⊥AB,AB的解析式为y=x+b,
    ∴直线CP的解析式为y=﹣x+.
    联立AB与CP,得,
    ∴点P的坐标为(﹣﹣b,+b),
    ∵点P关于⊙C的“幂值”为6,
    ∴r2﹣d2=6,
    ∴d2=3,即(﹣﹣b)2+(+b)2=3,
    整理得:b2+2b﹣9=0,
    解得b=﹣3或b=,
    ∴b的取值范围是﹣3≤b≤,
    故答案为:﹣3≤b≤.
    【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.
    24、通信塔CD的高度约为15.9cm.
    【解析】
    过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
    【详解】
    过点A作AE⊥CD于E,

    则四边形ABDE是矩形,
    设CE=xcm,
    在Rt△AEC中,∠AEC=90°,∠CAE=30°,
    所以AE=xcm,
    在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
    DM=cm,
    在Rt△ABM中,BM=cm,
    ∵AE=BD,
    ∴,
    解得:x=+3,
    ∴CD=CE+ED=+9≈15.9(cm),
    答:通信塔CD的高度约为15.9cm.
    【点睛】
    本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.

    相关试卷

    河北省张家口市达标名校2021-2022学年中考数学猜题卷含解析:

    这是一份河北省张家口市达标名校2021-2022学年中考数学猜题卷含解析,共23页。试卷主要包含了答题时请按要求用笔,如图,,则的度数为,﹣2的绝对值是,若|a|=﹣a,则a为等内容,欢迎下载使用。

    2021-2022学年河西成功校中考数学猜题卷含解析:

    这是一份2021-2022学年河西成功校中考数学猜题卷含解析,共17页。试卷主要包含了下列计算正确的是,若  ,则括号内的数是等内容,欢迎下载使用。

    2021-2022学年河北省保定唐县联考中考猜题数学试卷含解析:

    这是一份2021-2022学年河北省保定唐县联考中考猜题数学试卷含解析,共22页。试卷主要包含了y=,下列计算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map