终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析

    立即下载
    加入资料篮
    黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析第1页
    黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析第2页
    黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份黑龙江省哈尔滨156中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,我市连续7天的最高气温为,下列各数中,最小的数是,一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算中,正确的是( )
    A. B. C. D.
    2.甲、乙、丙、丁四名射击运动员进行淘汰赛,在相同条件下,每人射击10次,甲、乙两人的成绩如图所示,丙、丁二人的成绩如表所示.欲淘汰一名运动员,从平均数和方差两个因素分析,应淘汰(  )



    平均数
    8
    8
    方差
    1.2
    1.8

    A.甲 B.乙 C.丙 D.丁
    3.如图,在矩形ABCD中,连接BD,点O是BD的中点,若点M 在AD边上,连接MO并延长交BC边于点M’,连接MB,DM’则图中的全等三角形共有( )

    A.3对 B.4对 C.5对 D.6对
    4.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    5.如图,为的直径,为上两点,若,则的大小为(  ).

    A.60° B.50° C.40° D.20°
    6.如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,DE:EC=2:3,则S△DEF:S△ABF=(  )

    A.2:3 B.4:9 C.2:5 D.4:25
    7.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    8.若正多边形的一个内角是150°,则该正多边形的边数是( )
    A.6 B.12 C.16 D.18
    9.下列各数中,最小的数是( )
    A.﹣4 B.3 C.0 D.﹣2
    10.一、单选题
    小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在实数﹣2、0、﹣1、2、中,最小的是_______.
    12.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.

    13.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是  ▲  (结果保留π).

    14.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.

    15.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.
    16.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=的图像交于E、F两点,若△DEF的面积为,则k的值_______ .

    三、解答题(共8题,共72分)
    17.(8分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:
    请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是   个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有   人.
    18.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

    19.(8分)如图 1,在等腰△ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD.在线段 AD 上任取一点 P,连接 PB,PE.若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y.
    小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:
    (1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:
    x
    0
    1
    2
    3
    4
    5
    6
    y
    5.2

    4.2
    4.6
    5.9
    7.6
    9.5
    说明:补全表格时,相关数值保留一位小数.(参考数据:≈1.414,≈1.732,≈2.236)
    (2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
    (3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置.

    20.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)

    21.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
    ①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
    时间(第x天)
    1
    2
    3
    10

    日销售量(n件)
    198
    196
    194
    ?

    ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
    时间(第x天)
    1≤x<50
    50≤x≤90
    销售价格(元/件)
    x+60
    100
    (1)求出第10天日销售量;
    (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
    (3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
    22.(10分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
    (1)当m=6时,求线段CD的长;
    (2)设圆心O1在直线上方,试用n的代数式表示m;
    (3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.

    23.(12分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.
    24.如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).
    (1)求抛物线l2的函数表达式;
    (2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;
    (3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据积的乘方、合并同类项、同底数幂的除法以及幂的乘方进行计算即可.
    【详解】
    A、(2a)3=8a3,故本选项错误;
    B、a3+a2不能合并,故本选项错误;
    C、a8÷a4=a4,故本选项错误;
    D、(a2)3=a6,故本选项正确;
    故选D.
    【点睛】
    本题考查了积的乘方、合并同类项、同底数幂的除法以及幂的乘方,掌握运算法则是解题的关键.
    2、D
    【解析】
    求出甲、乙的平均数、方差,再结合方差的意义即可判断.
    【详解】
    =(6+10+8+9+8+7+8+9+7+7)=8,
    = [(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]
    =×13
    =1.3;
    =(7+10+7+7+9+8+7+9+9+7)=8,
    = [(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]
    =×12
    =1.2;
    丙的平均数为8,方差为1.2,
    丁的平均数为8,方差为1.8,
    故4个人的平均数相同,方差丁最大.
    故应该淘汰丁.
    故选D.
    【点睛】
    本题考查方差、平均数、折线图等知识,解题的关键是记住平均数、方差的公式.
    3、D
    【解析】
    根据矩形的对边平行且相等及其对称性,即可写出图中的全等三角形的对数.
    【详解】
    图中图中的全等三角形有△ABM≌△CDM’,△ABD≌△CDB, △OBM≌△ODM’,
    △OBM’≌△ODM, △M’BM≌△MDM’, △DBM≌△BDM’,故选D.
    【点睛】
    此题主要考查矩形的性质及全等三角形的判定,解题的关键是熟知矩形的对称性.
    4、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    5、B
    【解析】
    根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
    【详解】
    解:连接,

    ∵为的直径,
    ∴.
    ∵,
    ∴,
    ∴.
    故选:B.
    【点睛】
    本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
    6、D
    【解析】
    试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25
    试题解析:∵四边形ABCD是平行四边形,
    ∴AB∥CD,BA=DC
    ∴∠EAB=∠DEF,∠AFB=∠DFE,
    ∴△DEF∽△BAF,
    ∴DE:AB=DE:DC=2:5,
    ∴S△DEF:S△ABF=4:25,
    考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.
    7、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
    8、B
    【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
    故选B.
    9、A
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
    【详解】
    根据有理数比较大小的方法,可得
    ﹣4<﹣2<0<3
    ∴各数中,最小的数是﹣4
    故选:A
    【点睛】
    本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
    10、C
    【解析】
    解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
    可列方程得,
    故选C.
    【点睛】
    本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣1.
    【解析】
    解:在实数﹣1、0、﹣1、1、中,最小的是﹣1,
    故答案为﹣1.
    【点睛】
    本题考查实数大小比较.
    12、3或1
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBM=∠CBM,
    ∴∠FBD=∠FDB,
    ∴FB=FD=12cm,
    ∵AF=6cm,
    ∴AD=18cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=9cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    根据题意得:6-t=9-2t或6-t=2t-9,
    解得:t=3或t=1.
    故答案为3或1.
    【点睛】
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.
    13、
    【解析】
    过D点作DF⊥AB于点F.

    ∵AD=1,AB=4,∠A=30°,
    ∴DF=AD•sin30°=1,EB=AB﹣AE=1.
    ∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积
    =.
    故答案为:.
    14、3:2
    【解析】
    因为DE∥BC,所以,因为EF∥AB,所以,所以,故答案为: 3:2.
    15、1.57×1
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    将1570000用科学记数法表示为1.57×1.
    故答案为1.57×1.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    16、1
    【解析】
    利用对称性可设出E、F的两点坐标,表示出△DEF的面积,可求出k的值.
    【详解】
    解:设AF=a(a<2),则F(a,2),E(2,a),
    ∴FD=DE=2−a,
    ∴S△DEF=DF•DE==,
    解得a=或a=(不合题意,舍去),
    ∴F(,2),
    把点F(,2)代入
    解得:k=1,
    故答案为1.
    【点睛】
    本题主要考查反比例函数与正方形和三角形面积的运用,表示出E和F的坐标是关键.

    三、解答题(共8题,共72分)
    17、(1)图形见解析;(2)1;(3)1.
    【解析】
    (1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;
    (2)根据众数的定义求解可得;
    (3)用总人数乘以样本中D和E人数占总人数的比例即可得.
    【详解】
    解:(1)∵被调查的总人数为20÷20%=100(人),
    则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),
    补全图形如下:

    (2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,
    故答案为1;
    (3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× =1(人),
    故答案为1.
    【点睛】
    此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.
    18、(1)抽样调查;12;3;(2)60;(3).
    【解析】
    试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
    (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
    (3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
    试题解析:(1)抽样调查,
    所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:

    (2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
    (3)画树状图如下:

    列表如下:

    共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.
    19、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.
    【解析】
    (1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【详解】
    (1)根据题意,作图得,y=4.5故答案为:4.5
    (2)根据数据画图得

    (3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为.线段 AD 上靠近 D 点三等分点处.
    【点睛】
    本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.
    20、2.7米
    【解析】
    解:作BF⊥DE于点F,BG⊥AE于点G

    在Rt△ADE中
    ∵tan∠ADE=,
    ∴DE="AE" ·tan∠ADE=15
    ∵山坡AB的坡度i=1:,AB=10
    ∴BG=5,AG=,
    ∴EF=BG=5,BF=AG+AE=+15
    ∵∠CBF=45°
    ∴CF=BF=+15
    ∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
    答:这块宣传牌CD的高度为2.7米.
    21、(1)1件;(2)第40天,利润最大7200元;(3)46天
    【解析】
    试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
    (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
    (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
    试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
    所以n关于x的一次函数表达式为n=-2x+200;
    当x=10时,n=-2×10+200=1.
    (2)设销售该产品每天利润为y元,y关于x的函数表达式为:
    当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
    ∵-2<0,∴当x=40时,y有最大值,最大值是7200;
    当50≤x≤90时,y=-120x+12000,
    ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
    综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
    (3)在该产品销售的过程中,共有46天销售利润不低于5400元.
    22、 (1)CD=;(2)m= ;(3) n的值为或
    【解析】
    分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
    (2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
    (3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
    详解:(1)过点作⊥,垂足为点,连接.

    在Rt△,∴.
    ∵=6,∴.
    由勾股定理得: .
    ∵⊥,∴.
    (2)在Rt△,∴.
    在Rt△中,.
    在Rt△中,.
    可得: ,解得.
    (3)△成为等腰三角形可分以下几种情况:
    ① 当圆心、在弦异侧时
    i),即,由,解得.
    即圆心距等于、的半径的和,就有、外切不合题意舍去.
    ii),由 ,
    解得:,即 ,解得.
    ②当圆心、在弦同侧时,同理可得: .
    ∵是钝角,∴只能是,即,解得.
    综上所述:n的值为或.
    点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
    23、绳索长为20尺,竿长为15尺.
    【解析】
    设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.
    【详解】
    设绳索长、竿长分别为尺,尺,
    依题意得:
    解得:,.
    答:绳索长为20尺,竿长为15尺.
    【点睛】
    本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
    24、(1)抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.
    【解析】
    (1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.
    【详解】
    (1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,
    ∴x=﹣=1,b=2,
    ∴抛物线l1的函数表达式为:y=﹣x2+2x+3,
    当y=0时,﹣x2+2x+3=0,
    解得:x1=3,x2=﹣1,
    ∴A(﹣1,0),B(3,0),
    设抛物线l2的函数表达式;y=a(x﹣1)(x+1),
    把D(0,﹣1)代入得:﹣1a=﹣1,a=1,
    ∴抛物线l2的函数表达式;y=x2﹣4x﹣1;
    (2)作CH⊥PG交直线PG于点H,
    设P点坐标为(1,y),由(1)可得C点坐标为(0,3),
    ∴CH=1,PH=|3﹣y |,PG=|y |,AG=2,
    ∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2= =y2+4,
    ∵PC=PA,
    ∴PA2=PC2,
    ∴y2﹣6y+10=y2+4,解得y=1,
    ∴P点坐标为(1,1);

    (3)由题意可设M(x,x2﹣4x﹣1),
    ∵MN∥y轴,
    ∴N(x,﹣x2+2x+3),
    令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,
    ①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,
    显然﹣1<≤4,
    ∴当x=时,MN有最大值12.1;
    ②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,
    显然当x>时,MN随x的增大而增大,
    ∴当x=1时,MN有最大值,MN=2(1﹣)2﹣=12.
    综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.
    【点睛】
    本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.

    相关试卷

    黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省哈尔滨市南岗区第十七中学2022年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了2cs 30°的值等于等内容,欢迎下载使用。

    黑龙江省哈尔滨市风华中学2022年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省哈尔滨市风华中学2022年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了如图,l1∥l2,AF等内容,欢迎下载使用。

    黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map