黑龙江省哈尔滨六十九2021-2022学年中考考前最后一卷数学试卷含解析
展开
这是一份黑龙江省哈尔滨六十九2021-2022学年中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列叙述,错误的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是( )
A. B. C. D.
2.下列计算正确的是( )
A.x4•x4=x16 B.(a+b)2=a2+b2
C.=±4 D.(a6)2÷(a4)3=1
3.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为( )
A. B.π C.2π D.3π
4.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是( )
A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<0
5.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )
A.先向下移动1格,再向左移动1格 B.先向下移动1格,再向左移动2格
C.先向下移动2格,再向左移动1格 D.先向下移动2格,再向左移动2格
6.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A. B. C. D.
7.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是( )
A. B. C. D.
8.方程5x+2y=-9与下列方程构成的方程组的解为的是( )
A.x+2y=1 B.3x+2y=-8
C.5x+4y=-3 D.3x-4y=-8
9.下列叙述,错误的是( )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线相等的四边形是矩形
10.把8a3﹣8a2+2a进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
二、填空题(共7小题,每小题3分,满分21分)
11.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.
12.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.
13.如图,点分别在正三角形的三边上,且也是正三角形.若的边长为,的边长为,则的内切圆半径为__________.
14.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是_________.
15.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.
16.计算:3﹣1﹣30=_____.
17.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .
三、解答题(共7小题,满分69分)
18.(10分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)
(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
19.(5分)王老师对试卷讲评课中九年级学生参与的深度与广度进行评价调查,每位学生最终评价结果为主动质疑、独立思考、专注听讲、讲解题目四项中的一项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在扇形的圆心角度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市九年级学生有8000名,那么在试卷评讲课中,“独立思考”的九年级学生约有多少人?
20.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:
AQI指数
质量等级
天数(天)
0-50
优
m
51-100
良
44
101-150
轻度污染
n
151-200
中度污染
4
201-300
重度污染
2
300以上
严重污染
2
(1)统计表中m= ,n= ,扇形统计图中,空气质量等级为“良”的天数占 %;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少?
21.(10分)关于x的一元二次方程有两个实数根,则m的取值范围是( )
A.m≤1 B.m<1 C.﹣3≤m≤1 D.﹣3<m<1
22.(10分)(1)计算:|﹣3|+(π﹣2 018)0﹣2sin 30°+()﹣1.
(2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.
23.(12分)(1)计算:|﹣3|﹣﹣2sin30°+(﹣)﹣2
(2)化简:.
24.(14分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
【详解】
解,连结OB,
∵、是的切线,
∴,,则,
∵四边形APBO的内角和为360°,即,
∴,
又∵,,
∴,
∵,
∴,
∵,
∴,
故选:B.
【点睛】
本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
2、D
【解析】
试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
考点:1、幂的运算;2、完全平方公式;3、算术平方根.
3、A
【解析】
根据旋转的性质和弧长公式解答即可.
【详解】
解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,
∴∠AOC=90°,
∵OC=3,
∴点A经过的路径弧AC的长== ,
故选:A.
【点睛】
此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.
4、B
【解析】
由已知抛物线求出对称轴,
解:抛物线:,对称轴,由判别式得出a的取值范围.
,,
∴,
①,.
②由①②得.
故选B.
5、C
【解析】
根据题意,结合图形,由平移的概念求解.
【详解】
由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.
【点睛】
本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.
6、B
【解析】
袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
7、D
【解析】
分析:根据主视图和俯视图之间的关系可以得出答案.
详解: ∵主视图和俯视图的长要相等, ∴只有D选项中的长和俯视图不相等,故选D.
点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.
8、D
【解析】
试题分析:将x与y的值代入各项检验即可得到结果.
解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.
故选D.
点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.
9、D
【解析】
【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.
【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;
B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;
C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;
D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,
故选D.
【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.
10、C
【解析】
首先提取公因式2a,进而利用完全平方公式分解因式即可.
【详解】
解:8a3﹣8a2+2a
=2a(4a2﹣4a+1)
=2a(2a﹣1)2,故选C.
【点睛】
本题因式分解中提公因式法与公式法的综合运用.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
设AB=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.
【详解】
∵△BCD∽△BAC,
∴=,
设AB=x,
∴22=x,
∵x>0,
∴x=4,
∴AC=AD=4-1=3,
∵△BCD∽△BAC,
∴==,
∴CD=.
故答案为
【点睛】
本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.
12、(1,﹣3)
【解析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.
【详解】
如图所示:
点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).
【点睛】
考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.
13、
【解析】
根据△ABC、△EFD都是等边三角形,可证得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根据切线长定理得到AH=(AE+AF-EF)=(a-b);,再根据直角三角形的性质即可求出△AEF的内切圆半径.
【详解】
解:如图1,⊙I是△ABC的内切圆,由切线长定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]= [(AB+AC)-(BF+CF)]=(AB+AC-BC),
如图2,∵△ABC,△DEF都为正三角形,
∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,
,
∴△AEF≌△CFD(AAS);
同理可证:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
设M是△AEF的内心,过点M作MH⊥AE于H,
则根据图1的结论得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH•tan30°=(a-b)•=
故答案为:.
【点睛】
本题主要考查的是三角形的内切圆、等边三角形的性质、全等三角形的性质和判定,切线的性质,圆的切线长定理,根据已知得出AH的长是解题关键.
14、
【解析】
分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组和双曲线,找出符号要求的可能性,从而可以解答本题.
详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a,再从剩下的四个数中任意抽取一个数记为b,则(a,b)的所有可能性是:
(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、
(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、
(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、
(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、
(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x,y的二元一次方程组有整数解,且点(a,b)落在双曲线上的概率是:.故答案为.
点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.
15、或
【解析】
由,,得,所以.再以①和②两种情况分类讨论即可得出答案.
【详解】
因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.
若点在矩形ABCD的内部时,如图
则GF=AB=4,
由可知.
又.
.
又.
.
.
.
若
则,.
.
则.
.
.
若
则,.
.
则 .
.
.
故答案或.
【点睛】
本题主要考查了翻折问题和相似三角形判定,灵活运用是关键
错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.
16、﹣.
【解析】
原式利用零指数幂、负整数指数幂法则计算即可求出值.
【详解】
原式=﹣1=﹣.
故答案是:﹣.
【点睛】
考查了实数的运算,熟练掌握运算法则是解本题的关键.
17、4cm
【解析】
求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.
【详解】
扇形的弧长==4π,
圆锥的底面半径为4π÷2π=2,
故圆锥的高为:=4,
故答案为4cm.
【点睛】
本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.
三、解答题(共7小题,满分69分)
18、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
【解析】
试题分析:(1)根据平均数和中位数的定义求解可得;
(2)用洗衣服的水量除以第3天的用水总量即可得;
(3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
∴用水量的中位数为800升;
(2)×100%=12.5%.
答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
19、(1)560; (2)54;(3)详见解析;(4)独立思考的学生约有840人.
【解析】
(1)由“专注听讲”的学生人数除以占的百分比求出调查学生总数即可;
(2)由“主动质疑”占的百分比乘以360°即可得到结果;
(3)求出“讲解题目”的学生数,补全统计图即可;
(4)求出“独立思考”学生占的百分比,乘以2800即可得到结果.
【详解】
(1)根据题意得:224÷40%=560(名),
则在这次评价中,一个调查了560名学生;
故答案为:560;
(2)根据题意得:×360°=54°,
则在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54度;
故答案为:54;
(3)“讲解题目”的人数为560-(84+168+224)=84,补全统计图如下:
(4)根据题意得:2800×(人),
则“独立思考”的学生约有840人.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20、 (1)m=20,n=8;55;(2) 答案见解析.
【解析】
(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;
(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案.
【详解】
(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,
∴空气质量等级为“良”的天数占:×100%=55%.
故答案为20,8,55;
(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),
答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;
补全统计图:
【点睛】
此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
21、C
【解析】
利用二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.
【详解】
根据题意得,
解得-3≤m≤1.
故选C.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
22、(1)6;(2)﹣(x+1),1.
【解析】
(1)原式=3+1﹣2×+3=6
(2)由题意可知:x2+3x+2=0,
解得:x=﹣1或x=﹣2
原式=(x﹣1)÷
=﹣(x+1)
当x=﹣1时,x+1=0,分式无意义,
当x=﹣2时,
原式=1
23、 (1)2;(2) x﹣y.
【解析】
分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.
详解:(1)原式=3﹣4﹣2×+4=2;
(2)原式=•=x﹣y.
点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
24、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.
【解析】
(1)若设甲服装的成本为x元,则乙服装的成本为(500-x)元.根据公式:总利润=总售价-总进价,即可列出方程.
(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;
(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.
【详解】
(1)设甲服装的成本为x元,则乙服装的成本为(500-x)元,
根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x)-500=67,
解得:x=300,
500-x=1.
答:甲服装的成本为300元、乙服装的成本为1元.
(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,
∴设每件乙服装进价的平均增长率为y,
则,
解得:=0.1=10%,=-2.1(不合题意,舍去).
答:每件乙服装进价的平均增长率为10%;
(3)∵每件乙服装进价按平均增长率再次上调
∴再次上调价格为:242×(1+10%)=266.2(元)
∵商场仍按9折出售,设定价为a元时
0.9a-266.2>0
解得:a>
故定价至少为296元时,乙服装才可获得利润.
考点:一元二次方程的应用,不等式的应用,打折销售问题
相关试卷
这是一份黑龙江哈尔滨道外区重点名校2021-2022学年中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了下列运算正确的是,下列计算正确的是等内容,欢迎下载使用。
这是一份2022届哈尔滨香坊区中考数学考前最后一卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算的值,﹣的绝对值是等内容,欢迎下载使用。
这是一份2021-2022学年南师附中集团中考考前最后一卷数学试卷含解析,共24页。试卷主要包含了太原市出租车的收费标准是,计算3a2-a2的结果是,下列运算结果是无理数的是等内容,欢迎下载使用。