终身会员
搜索
    上传资料 赚现金
    湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析
    立即下载
    加入资料篮
    湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析01
    湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析02
    湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析

    展开
    这是一份湖北省黄冈市麻城市顺河镇重点达标名校2022年中考数学模试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列图形是轴对称图形的有等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )

    A.2+ B.2+2 C.4 D.3
    2.下列说法不正确的是( )
    A.选举中,人们通常最关心的数据是众数
    B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
    C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
    D.数据3,5,4,1,﹣2的中位数是4
    3.-sin60°的倒数为( )
    A.-2 B. C.- D.-
    4.圆锥的底面半径为2,母线长为4,则它的侧面积为(  )
    A.8π B.16π  C.4π D.4π
    5.绿豆在相同条件下的发芽试验,结果如下表所示:
    每批粒数n
    100
    300
    400
    600
    1000
    2000
    3000
    发芽的粒数m
    96
    282
    382
    570
    948
    1904
    2850
    发芽的频率
    0.960
    0.940
    0.955
    0.950
    0.948
    0.952
    0.950
    下面有三个推断:
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
    ②根据上表,估计绿豆发芽的概率是0.95;
    ③若n为4000,估计绿豆发芽的粒数大约为3800粒.
    其中推断合理的是(  )
    A.① B.①② C.①③ D.②③
    6.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是(  )

    A. B. C. D.
    7.下列图形是轴对称图形的有(  )

    A.2个 B.3个 C.4个 D.5个
    8.下列条件中不能判定三角形全等的是( )
    A.两角和其中一角的对边对应相等 B.三条边对应相等
    C.两边和它们的夹角对应相等 D.三个角对应相等
    9.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是(  )

    A.① B.② C.③ D.④
    10.如图,已知△ABC中,∠ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )

    A. B.4 C. D.
    11.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(  )

    A. B. C. D.
    12.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
    A.= B.=
    C.= D.=
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为______.

    14.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
    15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_____立方米.
    16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.

    17.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.
    18.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?

    20.(6分)某中学采用随机的方式对学生掌握安全知识的情况进行测评,并按成绩高低分成优、良、中、差四个等级进行统计,绘制了下面两幅尚不完整的统计图.请根据有关信息解答:

    (1)接受测评的学生共有________人,扇形统计图中“优”部分所对应扇形的圆心角为________°,并补全条形统计图;
    (2)若该校共有学生1200人,请估计该校对安全知识达到“良”程度的人数;
    (3)测评成绩前五名的学生恰好3个女生和2个男生,现从中随机抽取2人参加市安全知识竞赛,请用树状图或列表法求出抽到1个男生和1个女生的概率.
    21.(6分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
    (1)求证:BE=CE
    (2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
    ①求证:△BEM≌△CEN;
    ②若AB=2,求△BMN面积的最大值;
    ③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

    22.(8分)如图,直线y=﹣x+3分别与x轴、y交于点B、C;抛物线y=x2+bx+c经过点B、C,与x轴的另一个交点为点A(点A在点B的左侧),对称轴为l1,顶点为D.

    (1)求抛物线y=x2+bx+c的解析式.
    (2)点M(1,m)为y轴上一动点,过点M作直线l2平行于x轴,与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),且x2>x1>1.
    ①结合函数的图象,求x3的取值范围;
    ②若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,求m的值.
    23.(8分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.

    24.(10分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.
    25.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
    (1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
    (2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
    (3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.

    26.(12分)如图,已知在梯形ABCD中,,P是线段BC上一点,以P为圆心,PA为半径的与射线AD的另一个交点为Q,射线PQ与射线CD相交于点E,设.

    (1)求证:;
    (2)如果点Q在线段AD上(与点A、D不重合),设的面积为y,求y关于x的函数关系式,并写出定义域;
    (3)如果与相似,求BP的长.
    27.(12分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
    (1)若苗圃园的面积为72平方米,求x;

    (2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
    (3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.
    详解:∵DE垂直平分AB,
    ∴BE=AE,
    ∴AE+CE=BC=2,
    ∴△ACE的周长=AC+AE+CE=AC+BC=2+2,
    故选B.
    点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    2、D
    【解析】
    试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
    B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
    C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
    D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
    故选D.
    考点:随机事件发生的可能性(概率)的计算方法
    3、D
    【解析】
    分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.
    详解:

    的倒数是.
    故选D.
    点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.
    4、A
    【解析】
    解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.
    5、D
    【解析】
    ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
    【详解】
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
    ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
    ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
    故选D.
    【点睛】
    本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    6、A
    【解析】
    解:∵AE平分∠BAD,
    ∴∠DAE=∠BAE;
    又∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠BEA=∠DAE=∠BAE,
    ∴AB=BE=6,
    ∵BG⊥AE,垂足为G,
    ∴AE=2AG.
    在Rt△ABG中,∵∠AGB=90°,AB=6,BG=,
    ∴AG==2,
    ∴AE=2AG=4;
    ∴S△ABE=AE•BG=.
    ∵BE=6,BC=AD=9,
    ∴CE=BC﹣BE=9﹣6=3,
    ∴BE:CE=6:3=2:1,
    ∵AB∥FC,
    ∴△ABE∽△FCE,
    ∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=S△ABE=.
    故选A.

    【点睛】
    本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.
    7、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    8、D
    【解析】
    解:A、符合AAS,能判定三角形全等;
    B、符合SSS,能判定三角形全等;;
    C、符合SAS,能判定三角形全等;
    D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
    故选D.
    9、A
    【解析】
    由平面图形的折叠及正方体的表面展开图的特点解题.
    【详解】
    将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
    故选A.
    【点睛】
    本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.
    10、B
    【解析】
    求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.
    【详解】
    解:∵AD⊥BC,BE⊥AC,
    ∴∠ADB=∠AEB=∠ADC=90°,
    ∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,
    ∵∠AFE=∠BFD,
    ∴∠EAF=∠FBD,
    ∵∠ADB=90°,∠ABC=45°,
    ∴∠BAD=45°=∠ABC,
    ∴AD=BD,
    在△ADC和△BDF中 ,
    ∴△ADC≌△BDF,
    ∴DF=CD=4,
    故选:B.
    【点睛】
    此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.
    11、A
    【解析】
    试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.
    故选A.
    【考点】简单组合体的三视图.
    12、A
    【解析】
    设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
    【详解】
    设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
    故选A.
    【点睛】
    本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    连接,根据勾股定理知,可得当时,即线段最短,然后由勾股定理即可求得答案.
    【详解】
    连接.
    ∵是的切线,
    ∴;
    ∴,
    ∴当时,线段OP最短,
    ∴PQ的长最短,
    ∵在中,,
    ∴,
    ∴,
    ∴.

    故答案为:.
    【点睛】
    本题考查了切线的性质、等腰直角三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,得到时,线段最短是关键.
    14、
    【解析】
    先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
    的图象经过一、三象限,k>0,从而可以求出k的取值范围.
    【详解】
    ∵y=(k-1)x的函数值y随x的增大而减小,
    ∴k-1<0
    ∴k<1
    而y=(k-1)x的图象与反比例函数y=
    的图象没有公共点,
    ∴k>0
    综合以上可知:0<k<1.
    故答案为0<k<1.
    【点睛】
    本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
    15、3×1
    【解析】
    因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:
    600×50=30 000,用科学记数法表示为3×1立方米.
    故答案为3×1.
    16、200
    【解析】
    先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
    【详解】
    解:∵⊙O的直径为1000mm,
    ∴OA=OA=500mm.
    ∵OD⊥AB,AB=800mm,
    ∴AC=400mm,
    ∴OC== =300mm,
    ∴CD=OD-OC=500-300=200(mm).
    答:水的最大深度为200mm.
    故答案为:200
    【点睛】
    本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.
    17、y=2(x+3)2+1
    【解析】
    由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.
    【详解】
    抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.
    故答案为:y=2(x+3)2+1
    【点睛】
    本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
    18、10%.
    【解析】
    设平均每次降价的百分率为,那么第一次降价后的售价是原来的,那么第二次降价后的售价是原来的,根据题意列方程解答即可.
    【详解】
    设平均每次降价的百分率为,根据题意列方程得,

    解得,(不符合题意,舍去),
    答:这个百分率是.
    故答案为.
    【点睛】
    本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为,变化后的量为,平均变化率为,则经过两次变化后的数量关系为.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、羊圈的边长AB,BC分别是20米、20米.
    【解析】
    试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.
    试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米. 根据题意得 (100﹣4x)x=400,
    解得 x1=20,x2=1. 则100﹣4x=20或100﹣4x=2. ∵2>21, ∴x2=1舍去. 即AB=20,BC=20
    考点:一元二次方程的应用.
    20、 (1)80,135°,条形统计图见解析;(2)825人;(3)图表见解析,(抽到1男1女).
    【解析】
    试题分析:(1)、根据“中”的人数和百分比得出总人数,然后求出优所占的百分比,得出圆心角的度数;(2)、根据题意得出“良”和“优”两种所占的百分比,从而得出全校的总数;(3)、根据题意利用列表法或者树状图法画出所有可能出现的情况,然后根据概率的计算法则求出概率.
    试题解析:(1)80,135°; 条形统计图如图所示

    (2)该校对安全知识达到“良”程度的人数:(人)
    (3)解法一:列表如下:
    所有等可能的结果为20种,其中抽到一男一女的为12种,
    所以(抽到1男1女).
     
    女1
    女2
    女3
    男1
    男2
    女1
    ---
    女2女1
    女3女1
    男1女1
    男2女1
    女2
    女1女2
    ---
    女3女2
    男1女2
    男2女2
    女3
    女1女3
    女2女3
    ---
    男1女3
    男2女3
    男1
    女1男1
    女2男1
    女3男1
    ---
    男2男1
    男2
    女1男2
    女2男2
    女3男2
    男1男2
    ---
    解法二:画树状图如下:

    所有等可能的结果为20种,其中抽到一男一女的为12种,
    所以(抽到1男1女).
    21、(1)详见解析;(1)①详见解析;②1;③.
    【解析】
    (1)只要证明△BAE≌△CDE即可;
    (1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
    ②构建二次函数,利用二次函数的性质即可解决问题;
    ③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵四边形ABCD是矩形,
    ∴AB=DC,∠A=∠D=90°,
    ∵E是AD中点,
    ∴AE=DE,
    ∴△BAE≌△CDE,
    ∴BE=CE.
    (1)①解:如图1中,

    由(1)可知,△EBC是等腰直角三角形,
    ∴∠EBC=∠ECB=45°,
    ∵∠ABC=∠BCD=90°,
    ∴∠EBM=∠ECN=45°,
    ∵∠MEN=∠BEC=90°,
    ∴∠BEM=∠CEN,
    ∵EB=EC,
    ∴△BEM≌△CEN;
    ②∵△BEM≌△CEN,
    ∴BM=CN,设BM=CN=x,则BN=4-x,
    ∴S△BMN=•x(4-x)=-(x-1)1+1,
    ∵-<0,
    ∴x=1时,△BMN的面积最大,最大值为1.
    ③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.

    ∴EG=m+m=(1+)m,
    ∵S△BEG=•EG•BN=•BG•EH,
    ∴EH==m,
    在Rt△EBH中,sin∠EBH=.
    【点睛】
    本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
    22、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值为或2.
    【解析】
    (2)由直线y=﹣x+3分别与x轴、y交于点B、C求得点B、C的坐标,再代入y=x2+bx+c求得b、c的值,即可求得抛物线的解析式;(2)①先求得抛物线的顶点坐标为D(2,﹣2),当直线l2经过点D时求得m=﹣2;当直线l2经过点C时求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分当直线l2在x轴的下方时,点Q在点P、N之间和当直线l2在x轴的上方时,点N在点P、Q之间两种情况求m的值即可.
    【详解】
    (2)在y=﹣x+3中,令x=2,则y=3;
    令y=2,则x=3;得B(3,2),C(2,3),
    将点B(3,2),C(2,3)的坐标代入y=x2+bx+c
    得:,解得
    ∴y=x2﹣4x+3;
    (2)∵直线l2平行于x轴,
    ∴y2=y2=y3=m,
    ①如图①,y=x2﹣4x+3=(x﹣2)2﹣2,
    ∴顶点为D(2,﹣2),
    当直线l2经过点D时,m=﹣2;
    当直线l2经过点C时,m=3
    ∵x2>x2>2,
    ∴﹣2<y3<3,
    即﹣2<﹣x3+3<3,
    得2<x3<4,
    ②如图①,当直线l2在x轴的下方时,点Q在点P、N之间,
    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PQ=QN.
    ∵x2>x2>2,
    ∴x3﹣x2=x2﹣x2,
    即 x3=2x2﹣x2,
    ∵l2∥x轴,即PQ∥x轴,
    ∴点P、Q关于抛物线的对称轴l2对称,
    又抛物线的对称轴l2为x=2,
    ∴2﹣x2=x2﹣2,
    即x2=4﹣x2,
    ∴x3=3x2﹣4,
    将点Q(x2,y2)的坐标代入y=x2﹣4x+3
    得y2=x22﹣4x2+3,又y2=y3=﹣x3+3
    ∴x22﹣4x2+3=﹣x3+3,
    ∴x22﹣4x2=﹣(3x2﹣4)
    即 x22﹣x2﹣4=2,解得x2=,(负值已舍去),
    ∴m=()2﹣4×+3=
    如图②,当直线l2在x轴的上方时,点N在点P、Q之间,

    若三个点P、Q、N中恰好有一点是其他两点所连线段的中点,则得PN=NQ.
    由上可得点P、Q关于直线l2对称,
    ∴点N在抛物线的对称轴l2:x=2,
    又点N在直线y=﹣x+3上,
    ∴y3=﹣2+3=2,即m=2.
    故m的值为或2.
    【点睛】
    本题是二次函数综合题,
    本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、线段的中点及分类讨论思想等知识.在(2)中注意待定系数法的应用;在(2)①注意利用数形结合思想;在(2)②注意分情况讨论.本题考查知识点较多,综合性较强,难度较大.
    23、证明见解析.
    【解析】
    试题分析:由可得则可证明,因此可得
    试题解析:即,在和中,
    考点:三角形全等的判定.
    24、第二、三季度的平均增长率为20%.
    【解析】
    设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.
    【详解】
    设该省第二、三季度投资额的平均增长率为x,由题意,得:
    10(1+x)2=14.4,
    解得:x1=0.2=20%,x2=﹣2.2(舍去).
    答:第二、三季度的平均增长率为20%.
    【点睛】
    本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.
    25、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).
    【解析】
    (1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
    (2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
    (3)找出A的对称点A′,连接BA′,与x轴交点即为P.
    【详解】
    (1)如图1所示,△A1B1C1,即为所求:

    (2)如图2所示,△A2B2C2,即为所求:

    (3)找出A的对称点A′(1,﹣1),
    连接BA′,与x轴交点即为P;
    如图3所示,点P即为所求,点P坐标为(2,0).

    【点睛】
    本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.
    26、(1)见解析;(2);(3)当或8时,与相似.
    【解析】
    (1)想办法证明即可解决问题;
    (2)作A于M,于N.则四边形AMPN是矩形.想办法求出AQ、PN的长即可解决问题;
    (3)因为,所以,又,推出,推出相似时,与相似,分两种情形讨论即可解决问题;
    【详解】
    (1)证明:四边形ABCD是等腰梯形,






    .
    (2)解:作于M,于N.则四边形是矩形.

    在中,,




    .
    (3)解:,


    相似时,与相似,

    当时,,此时,
    当时,,此时,
    综上所述,当PB=5或8时,与△相似.
    【点睛】
    本题考查几何综合题、圆的有关性质、等腰梯形的性质,锐角三角函数、相似三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形和特殊四边形解决问题,属于中考压轴题.
    27、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
    【解析】
    (1)根据题意得方程求解即可;
    (2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
    (3)由题意得不等式,即可得到结论.
    【详解】
    解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
    x(31-2x)=72,即x2-15x+36=1.
    解得x1=3,x2=2.
    又∵31-2x≤3,即x≥6,
    ∴x=2
    (2)依题意,得8≤31-2x≤3.解得6≤x≤4.
    面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
    ①当x=时,S有最大值,S最大=;
    ②当x=4时,S有最小值,S最小=4×(31-22)=5.
    (3)令x(31-2x)=41,得x2-15x+51=1.
    解得x1=5,x2=1
    ∴x的取值范围是5≤x≤4.

    相关试卷

    2023-2024学年湖北省黄冈市麻城市顺河镇九上数学期末学业质量监测试题含答案: 这是一份2023-2024学年湖北省黄冈市麻城市顺河镇九上数学期末学业质量监测试题含答案,共7页。试卷主要包含了2020的相反数是等内容,欢迎下载使用。

    2023-2024学年湖北省黄冈市麻城市顺河镇九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份2023-2024学年湖北省黄冈市麻城市顺河镇九年级数学第一学期期末质量跟踪监视试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列根式是最简二次根式的是,下列函数中是反比例函数的是等内容,欢迎下载使用。

    湖北省黄冈市麻城市顺河镇2023-2024学年八上数学期末质量跟踪监视模拟试题含答案: 这是一份湖北省黄冈市麻城市顺河镇2023-2024学年八上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列各式计算正确的是,下列命题中,属于假命题的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map