搜索
    上传资料 赚现金
    英语朗读宝

    湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析

    湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析第1页
    湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析第2页
    湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析

    展开

    这是一份湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析,共19页。试卷主要包含了若二元一次方程组的解为则的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列运算正确的是(  )
    A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
    2.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
    A. B. C. D.
    3.不等式3x<2(x+2)的解是(  )
    A.x>2 B.x<2 C.x>4 D.x<4
    4.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )

    A.15m B.17m C.18m D.20m
    5.若二元一次方程组的解为则的值为( )
    A.1 B.3 C. D.
    6.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是(  )

    A.40° B.50° C.60° D.140°
    7.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
    A.2 B.3 C.5 D.7
    8.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
    ①图1中a的值为500;
    ②乙车的速度为35 m/s;
    ③图1中线段EF应表示为;
    ④图2中函数图象与x轴交点的横坐标为1.
    其中所有的正确结论是( )

    A.①④ B.②③
    C.①②④ D.①③④
    9.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是

    A.有两个相等的实数根 B.有两个异号的实数根
    C.有两个不相等的实数根 D.没有实数根
    10.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是(  )
    A. B.
    C. D.
    11.的一个有理化因式是(  )
    A. B. C. D.
    12.下列命题正确的是(  )
    A.对角线相等的四边形是平行四边形
    B.对角线相等的四边形是矩形
    C.对角线互相垂直的平行四边形是菱形
    D.对角线互相垂直且相等的四边形是正方形
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若关于的不等式组无解, 则的取值范围是 ________.
    14.抛物线y=x2﹣2x+3的对称轴是直线_____.
    15.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.
    16.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.

    17.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.
    18.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:

    则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.
    (1)求证:AD平分∠BAC;
    (2)求AC的长.

    20.(6分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
    21.(6分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m.当起重臂 AC 长度为 8 m,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)

    22.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
    (1)求双曲线解析式;
    (2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.

    23.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)

    24.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
    如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
    25.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
    ()请直接写出袋子中白球的个数.
    ()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
    26.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
    27.(12分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
    【详解】A、2a﹣a=a,故本选项错误;
    B、2a与b不是同类项,不能合并,故本选项错误;
    C、(a4)3=a12,故本选项错误;
    D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
    故选D.
    【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键. 
    2、C
    【解析】
    根据中位数的定义进行解答
    【详解】
    将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
    【点睛】
    本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
    3、D
    【解析】
    不等式先展开再移项即可解答.
    【详解】
    解:不等式3x<2(x+2),
    展开得:3x<2x+4,
    移项得:3x-2x<4,
    解之得:x<4.
    故答案选D.
    【点睛】
    本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
    4、C
    【解析】
    连结OA,如图所示:

    ∵CD⊥AB,
    ∴AD=BD=AB=12m.
    在Rt△OAD中,OA=13,OD=,
    所以CD=OC+OD=13+5=18m.
    故选C.
    5、D
    【解析】
    先解方程组求出,再将代入式中,可得解.
    【详解】
    解:

    得,
    所以,
    因为
    所以.
    故选D.
    【点睛】
    本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
    6、A
    【解析】
    试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
    解:∵DB⊥BC,∠2=50°,
    ∴∠3=90°﹣∠2=90°﹣50°=40°,
    ∵AB∥CD,
    ∴∠1=∠3=40°.
    故选A.

    7、C
    【解析】
    试题解析:∵这组数据的众数为7,
    ∴x=7,
    则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
    中位数为:1.
    故选C.
    考点:众数;中位数.
    8、A
    【解析】
    分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
    详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
    当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
    点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
    9、A
    【解析】
    根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
    【详解】
    ∵函数的顶点的纵坐标为4,
    ∴直线y=4与抛物线只有一个交点,
    ∴方程ax2+bx+c﹣4=0有两个相等的实数根,
    故选A.
    【点睛】
    本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
    10、C
    【解析】
    【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
    【详解】∵pv=k(k为常数,k>0)
    ∴p=(p>0,v>0,k>0),
    故选C.
    【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
    11、B
    【解析】
    找出原式的一个有理化因式即可.
    【详解】
    的一个有理化因式是,
    故选B.
    【点睛】
    此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
    12、C
    【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
    详解:对角线互相平分的四边形是平行四边形,A错误;
    对角线相等的平行四边形是矩形,B错误;
    对角线互相垂直的平行四边形是菱形,C正确;
    对角线互相垂直且相等的平行四边形是正方形;
    故选:C.
    点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
    【详解】

    解①得:x>a+3,
    解②得:x<1.
    根据题意得:a+3≥1,
    解得:a≥-2.
    故答案是:a≥-2.
    【点睛】
    本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
    14、x=1
    【解析】
    把解析式化为顶点式可求得答案.
    【详解】
    解:∵y=x2-2x+3=(x-1)2+2,
    ∴对称轴是直线x=1,
    故答案为x=1.
    【点睛】
    本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
    15、1.
    【解析】
    根据二次函数的性质列出不等式和等式,计算即可.
    【详解】
    解:∵关于x的二次函数y=ax1+a1的最小值为4,
    ∴a1=4,a>0,
    解得,a=1,
    故答案为1.
    【点睛】
    本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.
    16、1
    【解析】
    用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.
    【详解】
    估计该校男生的身高在170cm-175cm之间的人数约为300×=1(人),
    故答案为1.
    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    17、y=﹣x+1
    【解析】
    根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
    【详解】
    ∵一次函数y随x的增大而减小,
    ∴k<0,
    ∵一次函数的解析式,过点(1,0),
    ∴满足条件的一个函数解析式是y=-x+1,
    故答案为y=-x+1.
    【点睛】
    本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
    18、
    【解析】
    根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
    【详解】
    ∵y1=,∴y2===,y3=,……
    yn=.
    故答案为:.
    【点睛】
    本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)AC=.
    【解析】
    (1)证明:连接OD.
    ∵BD是⊙O的切线,
    ∴OD⊥BD.
    ∵AC⊥BD,
    ∴OD∥AC,
    ∴∠2=∠1.
    ∵OA=OD.
    ∴∠1=∠1,
    ∴∠1=∠2,
    即AD平分∠BAC.
    (2)解:∵OD∥AC,
    ∴△BOD∽△BAC,
    ∴,即.
    解得.

    20、1
    【解析】
    根据实数的混合计算,先把各数化简再进行合并.
    【详解】
    原式=1+3-2-3+2
    =1
    【点睛】
    此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
    21、5.8
    【解析】
    过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.
    【详解】
    解:如图,过点作于点,过点作于点,


    又,

    ∴四边形为矩形.


    在中,



    答:操作平台离地面的高度约为.
    【点睛】
    本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.
    22、(1);(2)(,0)或
    【解析】
    (1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
    (2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
    【详解】
    解:(1)把A(2,n)代入直线解析式得:n=3,
    ∴A(2,3),
    把A坐标代入y=,得k=6,
    则双曲线解析式为y=.
    (2)对于直线y=x+2,
    令y=0,得到x=-4,即C(-4,0).
    设P(x,0),可得PC=|x+4|.
    ∵△ACP面积为5,
    ∴|x+4|•3=5,即|x+4|=2,
    解得:x=-或x=-,
    则P坐标为或.
    23、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    24、(1)、(2)证明见解析(3)28
    【解析】
    试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
    (2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
    (3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
    试题解析:(1)如图1,在正方形ABCD中,
    ∵BC=CD,∠B=∠CDF,BE=DF,
    ∴△CBE≌△CDF,
    ∴CE=CF;
    (2)如图2,延长AD至F,使DF=BE,连接CF,

    由(1)知△CBE≌△CDF,
    ∴∠BCE=∠DCF.
    ∴∠BCE+∠ECD=∠DCF+∠ECD
    即∠ECF=∠BCD=90°,
    又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
    ∵CE=CF,∠GCE=∠GCF,GC=GC,
    ∴△ECG≌△FCG,
    ∴GE=GF,
    ∴GE=DF+GD=BE+GD;
    (3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.

    AE=AB-BE=12-4=8,
    设DF=x,则AD=12-x,
    根据(2)可得:DE=BE+DF=4+x,
    在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
    解得:x=1.
    则DE=4+1=2.
    【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
    25、(1)袋子中白球有2个;(2).
    【解析】
    试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
    试题解析:(1)设袋子中白球有x个,
    根据题意得:=,
    解得:x=2,
    经检验,x=2是原分式方程的解,
    ∴袋子中白球有2个;
    (2)画树状图得:

    ∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
    ∴两次都摸到相同颜色的小球的概率为:.
    考点:列表法与树状图法;概率公式.
    26、100或200
    【解析】
    试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
    试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
    列方程得,
    (8+×4)=4800,
    x2﹣300x+20000=0,
    解得x1=200,x2=100;
    要使百姓得到实惠,只能取x=200,
    答:每台冰箱应降价200元.
    考点:一元二次方程的应用.
    27、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
    【解析】
    (1)将点A的坐标代入解析式求解可得;
    (2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
    (3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
    【详解】
    (1)将点A(4,3)代入y=,得:k=12,
    则反比例函数解析式为y=;
    (2)如图,过点A作AC⊥x轴于点C,

    则OC=4、AC=3,
    ∴OA==1,
    ∵AB∥x轴,且AB=OA=1,
    ∴点B的坐标为(9,3);
    (3)∵点B坐标为(9,3),
    ∴OB所在直线解析式为y=x,
    由可得点P坐标为(6,2),(负值舍去),
    过点P作PD⊥x轴,延长DP交AB于点E,
    则点E坐标为(6,3),
    ∴AE=2、PE=1、PD=2,
    则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
    【点睛】
    本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.

    相关试卷

    2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析):

    这是一份2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析:

    这是一份湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了如图所示的几何体的俯视图是,函数中,x的取值范围是等内容,欢迎下载使用。

    2021-2022学年湖北阳新一中重点达标名校中考四模数学试题含解析:

    这是一份2021-2022学年湖北阳新一中重点达标名校中考四模数学试题含解析,共25页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map