湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析
展开
这是一份湖北省黄石市阳新一中卓越联盟重点名校2022年中考适应性考试数学试题含解析,共19页。试卷主要包含了若二元一次方程组的解为则的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
2.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).
A. B. C. D.
3.不等式3x<2(x+2)的解是( )
A.x>2 B.x<2 C.x>4 D.x<4
4.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )
A.15m B.17m C.18m D.20m
5.若二元一次方程组的解为则的值为( )
A.1 B.3 C. D.
6.如图,AB∥CD,DB⊥BC,∠2=50°,则∠1的度数是( )
A.40° B.50° C.60° D.140°
7.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )
A.2 B.3 C.5 D.7
8.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙 车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:
①图1中a的值为500;
②乙车的速度为35 m/s;
③图1中线段EF应表示为;
④图2中函数图象与x轴交点的横坐标为1.
其中所有的正确结论是( )
A.①④ B.②③
C.①②④ D.①③④
9.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
A.有两个相等的实数根 B.有两个异号的实数根
C.有两个不相等的实数根 D.没有实数根
10.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p(pa)与它的体积v(m3)的乘积是一个常数k,即pv=k(k为常数,k>0),下列图象能正确反映p与v之间函数关系的是( )
A. B.
C. D.
11.的一个有理化因式是( )
A. B. C. D.
12.下列命题正确的是( )
A.对角线相等的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形
D.对角线互相垂直且相等的四边形是正方形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于的不等式组无解, 则的取值范围是 ________.
14.抛物线y=x2﹣2x+3的对称轴是直线_____.
15.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.
16.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm之间的人数约有_____人.
17.请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_____.
18.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,⊙O的半径为4,B为⊙O外一点,连结OB,且OB=6.过点B作⊙O的切线BD,切点为点D,延长BO交⊙O于点A,过点A作切线BD的垂线,垂足为点C.
(1)求证:AD平分∠BAC;
(2)求AC的长.
20.(6分)计算:(1-n)0-|3-2 |+(- )-1+4cos30°.
21.(6分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m.当起重臂 AC 长度为 8 m,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
22.(8分)如图所示,直线y=x+2与双曲线y=相交于点A(2,n),与x轴交于点C.
(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为5,求点P的坐标.
23.(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
24.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10, 求直角梯形ABCD的面积.
25.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
26.(12分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
27.(12分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.求反比例函数y=的表达式;求点B的坐标;求△OAP的面积.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
2、C
【解析】
根据中位数的定义进行解答
【详解】
将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.
【点睛】
本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.
3、D
【解析】
不等式先展开再移项即可解答.
【详解】
解:不等式3x<2(x+2),
展开得:3x<2x+4,
移项得:3x-2x<4,
解之得:x<4.
故答案选D.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.
4、C
【解析】
连结OA,如图所示:
∵CD⊥AB,
∴AD=BD=AB=12m.
在Rt△OAD中,OA=13,OD=,
所以CD=OC+OD=13+5=18m.
故选C.
5、D
【解析】
先解方程组求出,再将代入式中,可得解.
【详解】
解:
,
得,
所以,
因为
所以.
故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
6、A
【解析】
试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.
解:∵DB⊥BC,∠2=50°,
∴∠3=90°﹣∠2=90°﹣50°=40°,
∵AB∥CD,
∴∠1=∠3=40°.
故选A.
7、C
【解析】
试题解析:∵这组数据的众数为7,
∴x=7,
则这组数据按照从小到大的顺序排列为:2,3,1,7,7,
中位数为:1.
故选C.
考点:众数;中位数.
8、A
【解析】
分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.
详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得: ,解得 ,∴y=-5x+500,
当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.
点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.
9、A
【解析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
【详解】
∵函数的顶点的纵坐标为4,
∴直线y=4与抛物线只有一个交点,
∴方程ax2+bx+c﹣4=0有两个相等的实数根,
故选A.
【点睛】
本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
10、C
【解析】
【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.
【详解】∵pv=k(k为常数,k>0)
∴p=(p>0,v>0,k>0),
故选C.
【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
11、B
【解析】
找出原式的一个有理化因式即可.
【详解】
的一个有理化因式是,
故选B.
【点睛】
此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.
12、C
【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.
详解:对角线互相平分的四边形是平行四边形,A错误;
对角线相等的平行四边形是矩形,B错误;
对角线互相垂直的平行四边形是菱形,C正确;
对角线互相垂直且相等的平行四边形是正方形;
故选:C.
点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.
【详解】
,
解①得:x>a+3,
解②得:x<1.
根据题意得:a+3≥1,
解得:a≥-2.
故答案是:a≥-2.
【点睛】
本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..
14、x=1
【解析】
把解析式化为顶点式可求得答案.
【详解】
解:∵y=x2-2x+3=(x-1)2+2,
∴对称轴是直线x=1,
故答案为x=1.
【点睛】
本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).
15、1.
【解析】
根据二次函数的性质列出不等式和等式,计算即可.
【详解】
解:∵关于x的二次函数y=ax1+a1的最小值为4,
∴a1=4,a>0,
解得,a=1,
故答案为1.
【点睛】
本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.
16、1
【解析】
用总人数300乘以样本中身高在170cm-175cm之间的人数占被调查人数的比例.
【详解】
估计该校男生的身高在170cm-175cm之间的人数约为300×=1(人),
故答案为1.
【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
17、y=﹣x+1
【解析】
根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题.
【详解】
∵一次函数y随x的增大而减小,
∴k<0,
∵一次函数的解析式,过点(1,0),
∴满足条件的一个函数解析式是y=-x+1,
故答案为y=-x+1.
【点睛】
本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合要去即可.
18、
【解析】
根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
【详解】
∵y1=,∴y2===,y3=,……
yn=.
故答案为:.
【点睛】
本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)AC=.
【解析】
(1)证明:连接OD.
∵BD是⊙O的切线,
∴OD⊥BD.
∵AC⊥BD,
∴OD∥AC,
∴∠2=∠1.
∵OA=OD.
∴∠1=∠1,
∴∠1=∠2,
即AD平分∠BAC.
(2)解:∵OD∥AC,
∴△BOD∽△BAC,
∴,即.
解得.
20、1
【解析】
根据实数的混合计算,先把各数化简再进行合并.
【详解】
原式=1+3-2-3+2
=1
【点睛】
此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.
21、5.8
【解析】
过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.
【详解】
解:如图,过点作于点,过点作于点,
.
又,
.
∴四边形为矩形.
在中,
,
.
.
答:操作平台离地面的高度约为.
【点睛】
本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.
22、(1);(2)(,0)或
【解析】
(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;
(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.
【详解】
解:(1)把A(2,n)代入直线解析式得:n=3,
∴A(2,3),
把A坐标代入y=,得k=6,
则双曲线解析式为y=.
(2)对于直线y=x+2,
令y=0,得到x=-4,即C(-4,0).
设P(x,0),可得PC=|x+4|.
∵△ACP面积为5,
∴|x+4|•3=5,即|x+4|=2,
解得:x=-或x=-,
则P坐标为或.
23、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
24、(1)、(2)证明见解析(3)28
【解析】
试题分析:(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;
(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解;
试题解析:(1)如图1,在正方形ABCD中,
∵BC=CD,∠B=∠CDF,BE=DF,
∴△CBE≌△CDF,
∴CE=CF;
(2)如图2,延长AD至F,使DF=BE,连接CF,
由(1)知△CBE≌△CDF,
∴∠BCE=∠DCF.
∴∠BCE+∠ECD=∠DCF+∠ECD
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°,
∵CE=CF,∠GCE=∠GCF,GC=GC,
∴△ECG≌△FCG,
∴GE=GF,
∴GE=DF+GD=BE+GD;
(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形.
AE=AB-BE=12-4=8,
设DF=x,则AD=12-x,
根据(2)可得:DE=BE+DF=4+x,
在直角△ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,
解得:x=1.
则DE=4+1=2.
【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.
25、(1)袋子中白球有2个;(2).
【解析】
试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
试题解析:(1)设袋子中白球有x个,
根据题意得:=,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
考点:列表法与树状图法;概率公式.
26、100或200
【解析】
试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.
试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+×4)件,
列方程得,
(8+×4)=4800,
x2﹣300x+20000=0,
解得x1=200,x2=100;
要使百姓得到实惠,只能取x=200,
答:每台冰箱应降价200元.
考点:一元二次方程的应用.
27、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=1.
【解析】
(1)将点A的坐标代入解析式求解可得;
(2)利用勾股定理求得AB=OA=1,由AB∥x轴即可得点B的坐标;
(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.
【详解】
(1)将点A(4,3)代入y=,得:k=12,
则反比例函数解析式为y=;
(2)如图,过点A作AC⊥x轴于点C,
则OC=4、AC=3,
∴OA==1,
∵AB∥x轴,且AB=OA=1,
∴点B的坐标为(9,3);
(3)∵点B坐标为(9,3),
∴OB所在直线解析式为y=x,
由可得点P坐标为(6,2),(负值舍去),
过点P作PD⊥x轴,延长DP交AB于点E,
则点E坐标为(6,3),
∴AE=2、PE=1、PD=2,
则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=1.
【点睛】
本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.
相关试卷
这是一份2024年湖北省黄石市阳新县部分学校中考二模数学试题(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份湖北省黄石市阳新一中卓越联盟2022年中考数学最后冲刺模拟试卷含解析,共17页。试卷主要包含了如图所示的几何体的俯视图是,函数中,x的取值范围是等内容,欢迎下载使用。
这是一份2021-2022学年湖北阳新一中重点达标名校中考四模数学试题含解析,共25页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。