年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析

    湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析第1页
    湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析第2页
    湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析

    展开

    这是一份湖北省丹江口市达标名校2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=3等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,若AB∥CD,则α、β、γ之间的关系为(  )

    A.α+β+γ=360° B.α﹣β+γ=180°
    C.α+β﹣γ=180° D.α+β+γ=180°
    2.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )

    A. B.
    C. D.
    3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    4.如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=(  )

    A.3 B.4 C.5 D.6
    5.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为(  )

    A.30° B.35° C.40° D.50°
    6.如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )

    A. B.
    C. D.
    7.抛物线y=3(x﹣2)2+5的顶点坐标是(  )
    A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)
    8.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:
    x
    ﹣2
    ﹣1
    0
    1
    2
    y
    8
    3
    0
    ﹣1
    0
    则抛物线的顶点坐标是(  )
    A.(﹣1,3) B.(0,0) C.(1,﹣1) D.(2,0)
    9.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是  

    A. B. C. D.
    10.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高(  )
    A.10℃ B.﹣10℃ C.6℃ D.﹣6℃
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,在四边形ABCD中,,AC、BD相交于点E,若,则______.

    12.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
    13.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 __________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)

    14.一个正四边形的内切圆半径与外接圆半径之比为:_________________
    15.某中学数学教研组有25名教师,将他们分成三组,在38~45(岁)组内有8名教师,那么这个小组的频率是_______。
    16.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=_____.
    三、解答题(共8题,共72分)
    17.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:
    (1)A组的频数a比B组的频数b小24,样本容量   ,a为   :
    (2)n为   °,E组所占比例为   %:
    (3)补全频数分布直方图;
    (4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有   名.

    18.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.

    (1)本次调查的学生共有 人,估计该校1200名学生中“不了解”的人数是 人;
    (2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
    19.(8分)如图,已知:正方形ABCD,点E在CB的延长线上,连接AE、DE,DE与边AB交于点F,FG∥BE交AE于点G.
    (1)求证:GF=BF;
    (2)若EB=1,BC=4,求AG的长;
    (3)在BC边上取点M,使得BM=BE,连接AM交DE于点O.求证:FO•ED=OD•EF.

    20.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
    (1)如图1,当AB=AC,且sin∠BEF=时,求的值;
    (2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
    (3)如图3,连AD交BC于G,当时,求矩形BCDE的面积

    21.(8分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某班模拟开展“中国诗词大赛”比赛,对全班同学成绩进行统计后分为“A优秀”、“B一般”、“C较差”、“D良好”四个等级,并根据成绩绘制成如下两幅不完整的统计图.请结合统计图中的信息,回答下列问题:
    (1)本班有多少同学优秀?
    (2)通过计算补全条形统计图.
    (3)学校预全面推广这个比赛提升学生的文化素养,估计该校3000人有多少人成绩良好?

    22.(10分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.

    (1)求证:BN平分∠ABE;
    (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;
    (3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.
    23.(12分)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC、AB于点E. F.试判断直线BC与⊙O的位置关系,并说明理由;若BD=2,BF=2,求⊙O的半径.

    24.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    过点E作EF∥AB,如图,易得CD∥EF,然后根据平行线的性质可得∠BAE+∠FEA=180°,∠C=∠FEC=γ,进一步即得结论.
    【详解】
    解:过点E作EF∥AB,如图,∵AB∥CD,AB∥EF,∴CD∥EF,
    ∴∠BAE+∠FEA=180°,∠C=∠FEC=γ,
    ∴∠FEA=β﹣γ,∴α+(β﹣γ)=180°,即α+β﹣γ=180°.
    故选:C.

    【点睛】
    本题考查了平行公理的推论和平行线的性质,属于常考题型,作EF∥AB、熟练掌握平行线的性质是解题的关键.
    2、A
    【解析】
    由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.
    【详解】
    解:大正方形的面积-小正方形的面积=,
    矩形的面积=,
    故,
    故选:A.
    【点睛】
    本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键.
    3、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    4、D
    【解析】
    欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1.
    【详解】
    ∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,
    则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,
    ∴S1+S1=4+4-1×1=2.
    故选D.
    5、A
    【解析】
    根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
    【详解】
    ∵CC′∥AB,∠CAB=75°,
    ∴∠C′CA=∠CAB=75°,
    又∵C、C′为对应点,点A为旋转中心,
    ∴AC=AC′,即△ACC′为等腰三角形,
    ∴∠CAC′=180°﹣2∠C′CA=30°.
    故选A.
    【点睛】
    此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
    6、A
    【解析】
    画出从正面看到的图形即可得到它的主视图.
    【详解】
    这个几何体的主视图为:

    故选:A.
    【点睛】
    本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.
    7、C
    【解析】
    根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.
    【详解】
    ∵抛物线解析式为y=3(x-2)2+5,
    ∴二次函数图象的顶点坐标是(2,5),
    故选C.
    【点睛】
    本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.
    8、C
    【解析】
    分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.
    详解:当或时,,当时,,
    ,解得 ,
    二次函数解析式为,
    抛物线的顶点坐标为,
    故选C.
    点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.
    9、B
    【解析】
    根据常见几何体的展开图即可得.
    【详解】
    由展开图可知第一个图形是②正方体的展开图,
    第2个图形是①圆柱体的展开图,
    第3个图形是③三棱柱的展开图,
    第4个图形是④四棱锥的展开图,
    故选B
    【点睛】
    本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
    10、A
    【解析】
    用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.
    【详解】
    8-(-2)=8+2=10℃.
    即这天的最高气温比最低气温高10℃.
    故选A.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    利用相似三角形的性质即可求解;
    【详解】
    解:∵ AB∥CD,
    ∴△AEB∽△CED,
    ∴ ,
    ∴ ,
    故答案为 .
    【点睛】
    本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.
    12、
    【解析】
    设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
    【详解】
    ∵甲平均每分钟打x个字,
    ∴乙平均每分钟打(x+20)个字,
    根据题意得:,
    故答案为.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    13、BE=DF
    【解析】
    可以添加的条件有BE=DF等;证明:
    ∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;
    又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
    ∴∠AEF=∠CFE.∴AE∥CF;
    ∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.
    14、
    【解析】
    如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=OH即可解答.
    【详解】
    解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,

    则OH为正方形ABCD的内切圆的半径,
    ∵∠OAB=45°,
    ∴OA=OH,

    即一个正四边形的内切圆半径与外接圆半径之比为,
    故答案为:.
    【点睛】
    本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.
    15、0.1
    【解析】
    根据频率的求法:频率=,即可求解.
    【详解】
    解:根据题意,38-45岁组内的教师有8名,
    即频数为8,而总数为25;
    故这个小组的频率是为=0.1;
    故答案为0.1.
    【点睛】
    本题考查频率、频数的关系,属于基础题,关键是掌握频率的求法:频率=.
    16、3.
    【解析】
    试题解析:把(-1,0)代入得:
    2-3+k-2=0,
    解得:k=3.
    故答案为3.

    三、解答题(共8题,共72分)
    17、(1)200;16(2)126;12%(3)见解析(4)940
    【解析】
    分析:(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.
    本题解析:
    ()调查的总人数为,
    ∴,

    ()部分所对的圆心角,即,
    组所占比例为:,
    ()组的频数为,组的频数为,
    补全频数分布直方图为:

    (),
    ∴估计成绩优秀的学生有人.
    点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.
    18、(1)50,360;(2) .
    【解析】
    试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;
    (2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.
    试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)
    由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)
    (2)树状图:

    由树状图可知共有12种结果,抽到1男1女分别为共8种.

    考点:1、扇形统计图,2、条形统计图,3、概率
    19、(1)证明见解析;(2)AG=;(3)证明见解析.
    【解析】
    (1)根据正方形的性质得到AD∥BC,AB∥CD,AD=CD,根据相似三角形的性质列出比例式,等量代换即可;
    (2)根据勾股定理求出AE,根据相似三角形的性质计算即可;
    (3)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.
    【详解】
    解:(1)∵四边形ABCD是正方形,
    ∴AD∥BC,AB∥CD,AD=CD,
    ∵GF∥BE,
    ∴GF∥BC,
    ∴GF∥AD,
    ∴,
    ∵AB∥CD,

    ∵AD=CD,
    ∴GF=BF;
    (2)∵EB=1,BC=4,
    ∴=4,AE=,
    ∴=4,
    ∴AG=;
    (3)延长GF交AM于H,

    ∵GF∥BC,
    ∴FH∥BC,
    ∴,
    ∴,
    ∵BM=BE,
    ∴GF=FH,
    ∵GF∥AD,
    ∴,,
    ∴,
    ∴,
    ∴FO•ED=OD•EF.
    【点睛】
    本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.
    20、 (1) ;(2)80;(3)100.
    【解析】
    (1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
    【详解】
    解:(1)过A作AK⊥BC于K,
    ∵sin∠BEF=,sin∠FAK=,
    ∴,
    设FK=3a,AK=5a,
    ∴AK=4a,
    ∵AB=AC,∠BAC=90°,
    ∴BK=CK=4a,
    ∴BF=a,
    又∵CF=7a,

    (2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
    ∵∠AGE=∠DHE=90°,
    ∴△EGA∽△EHD,
    ∴,
    ∴,其中EG=BK,
    ∵BC=10,tan∠ABC=,
    cos∠ABC=,
    ∴BA=BC· cos∠ABC=,
    BK= BA·cos∠ABC=
    ∴EG=8,
    另一方面:ED=BC=10,
    ∴EH·EA=80
    (3)延长AB、ED交于K,延长AC、ED交于T,
    ∵BC∥KT, ,
    ∴,同理:
    ∵FG2= BF·CG ∴,
    ∴ED2= KE·DT ∴ ,
    又∵△KEB∽△CDT,∴,
    ∴KE·DT =BE2, ∴BE2=ED2
    ∴ BE=ED


    【点睛】
    此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
    21、(1)本班有4名同学优秀;(2)补图见解析;(3)1500人.
    【解析】
    (1)根据统计图即可得出结论;
    (2)先计算出优秀的学生,再补齐统计图即可;
    (3)根据图2的数值计算即可得出结论.
    【详解】
    (1)本班有学生:20÷50%=40(名),
    本班优秀的学生有:40﹣40×30%﹣20﹣4=4(名),
    答:本班有4名同学优秀;
    (2)成绩一般的学生有:40×30%=12(名),
    成绩优秀的有4名同学,
    补全的条形统计图,如图所示;

    (3)3000×50%=1500(名),
    答:该校3000人有1500人成绩良好.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的知识点.
    22、(1)证明见解析;(2);(3)证明见解析.
    【解析】
    分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三线合一知AM⊥BC,从而根据∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN为等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得证;
    (2)设BM=CM=MN=a,知DN=BC=2a,证△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,从而得出答案;
    (3)F是AB的中点知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得证.
    详解:(1)∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵M为BC的中点,
    ∴AM⊥BC,
    在Rt△ABM中,∠MAB+∠ABC=90°,
    在Rt△CBE中,∠EBC+∠ACB=90°,
    ∴∠MAB=∠EBC,
    又∵MB=MN,
    ∴△MBN为等腰直角三角形,
    ∴∠MNB=∠MBN=45°,
    ∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
    ∴∠NBE=∠ABN,即BN平分∠ABE;
    (2)设BM=CM=MN=a,
    ∵四边形DNBC是平行四边形,
    ∴DN=BC=2a,
    在△ABN和△DBN中,
    ∵,
    ∴△ABN≌△DBN(SAS),
    ∴AN=DN=2a,
    在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
    解得:a=±(负值舍去),
    ∴BC=2a=;
    (3)∵F是AB的中点,
    ∴在Rt△MAB中,MF=AF=BF,
    ∴∠MAB=∠FMN,
    又∵∠MAB=∠CBD,
    ∴∠FMN=∠CBD,
    ∵,
    ∴,
    ∴△MFN∽△BDC.
    点睛:本题主要考查相似形的综合问题,解题的关键是掌握等腰三角形三线合一的性质、直角三角形和平行四边形的性质及全等三角形与相似三角形的判定与性质等知识点.
    23、(1)相切,理由见解析;(1)1.
    【解析】
    (1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;
    (1)根据勾股定理得出方程,求出方程的解即可.
    【详解】
    (1)直线BC与⊙O的位置关系是相切,

    理由是:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAB,
    ∴∠OAD=∠CAD,
    ∴∠ODA=∠CAD,
    ∴OD∥AC,
    ∵∠C=90°,
    ∴∠ODB=90°,即OD⊥BC,
    ∵OD为半径,
    ∴直线BC与⊙O的位置关系是相切;
    (1)设⊙O的半径为R,
    则OD=OF=R,
    在Rt△BDO中,由勾股定理得:OB=BD+OD,
    即(R+1) =(1)+R,
    解得:R=1,
    即⊙O的半径是1.
    【点睛】
    此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.
    24、(1);(2);(3)最多获利4480元.
    【解析】
    (1)销售量y为200件加增加的件数(80﹣x)×20;
    (2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;
    (3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.
    【详解】
    (1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,
    所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);
    (2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,
    所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:
    W=﹣20x2+3000x﹣108000;
    (3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,
    w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,
    ∵a=﹣20<0,
    ∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,
    ∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).
    所以商场销售该品牌童装获得的最大利润是4480元.
    【点睛】
    二次函数的应用.

    相关试卷

    湖北省丹江口市重点达标名校2022年中考考前最后一卷数学试卷含解析:

    这是一份湖北省丹江口市重点达标名校2022年中考考前最后一卷数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,,,,则等于等内容,欢迎下载使用。

    湖北省丹江口市达标名校2021-2022学年中考考前最后一卷数学试卷含解析:

    这是一份湖北省丹江口市达标名校2021-2022学年中考考前最后一卷数学试卷含解析,共22页。试卷主要包含了的算术平方根是,下列各数中是有理数的是,下列计算,正确的是等内容,欢迎下载使用。

    2022年武汉市达标名校中考考前最后一卷数学试卷含解析:

    这是一份2022年武汉市达标名校中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,若分式有意义,则a的取值范围是,估计的值在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map