黑龙江省牡丹江市2021-2022学年中考数学四模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是( )
A.a<3 B.a>3 C.a<﹣3 D.a>﹣3
2.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
3.下列运算结果正确的是( )
A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6 C.(﹣2x2)3=﹣8x6 D.4a2﹣(2a)2=2a2
4.下列运算结果正确的是( )
A.x2+2x2=3x4 B.(﹣2x2)3=8x6
C.x2•(﹣x3)=﹣x5 D.2x2÷x2=x
5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是( )
A.①② B.①③④ C.①②③⑤ D.①②③④⑤
6.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
7.不等式组的解集是( )
A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
8.若代数式,,则M与N的大小关系是( )
A. B. C. D.
9.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是( )
A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )
A.0.7米 B.1.5米 C.2.2米 D.2.4米
11.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
12.cos30°的值为( )
A.1 B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
14.如果点A(-1,4)、B(m,4)在抛物线y=a(x-1)2+h上,那么m的值为_____.
15.关于x的一元二次方程x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12﹣x1x2+x22的值是_____.
16.计算:=_______.
17.已知一组数据,,,,的平均数是,那么这组数据的方差等于________.
18.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为__________ .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
20.(6分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?
21.(6分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.
22.(8分)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为 且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).m= ,n= ;求销售蓝莓第几天时,当天的利润最大?最大利润是多少?在销售蓝莓的30天中,当天利润不低于870元的共有多少天?
23.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.
(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?
(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?
24.(10分)如图,⊙O的直径DF与弦AB交于点E,C为⊙O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD.
求证:AD•CE=DE•DF;
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);
(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明.
①∠CDB=∠CEB;
②AD∥EC;
③∠DEC=∠ADF,且∠CDE=90°.
25.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
26.(12分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
27.(12分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:
甲种
乙种
丙种
进价(元/台)
1200
1600
2000
售价(元/台)
1420
1860
2280
经预算,商场最多支出132000元用于购买这批电冰箱.
(1)商场至少购进乙种电冰箱多少台?
(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
试题分析:当x=0时,y=-5;当x=1时,y=a-1,函数与x轴在0和1之间有一个交点,则a-1>0,解得:a>1.
考点:一元二次方程与函数
2、D
【解析】
试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;
B.如图所示:﹣3<a<﹣2,故此选项错误;
C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;
D.由选项C可得,此选项正确.
故选D.
考点:实数与数轴
3、C
【解析】
根据多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则计算可得.
【详解】
A、(x3-x2+x)÷x=x2-x+1,此选项计算错误;
B、(-a2)•a3=-a5,此选项计算错误;
C、(-2x2)3=-8x6,此选项计算正确;
D、4a2-(2a)2=4a2-4a2=0,此选项计算错误.
故选:C.
【点睛】
本题主要考查整式的运算,解题的关键是掌握多项式除以单项式法则、同底数幂的乘法、积的乘方与幂的乘方及合并同类项法则.
4、C
【解析】
直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A选项:x2+2x2=3x2,故此选项错误;
B选项:(﹣2x2)3=﹣8x6,故此选项错误;
C选项:x2•(﹣x3)=﹣x5,故此选项正确;
D选项:2x2÷x2=2,故此选项错误.
故选C.
【点睛】
考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.
5、C
【解析】
根据二次函数的性质逐项分析可得解.
【详解】
解:由函数图象可得各系数的关系:a<0,b<0,c>0,
则①当x=1时,y=a+b+c<0,正确;
②当x=-1时,y=a-b+c>1,正确;
③abc>0,正确;
④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;
⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.
故所有正确结论的序号是①②③⑤.
故选C
6、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
7、D
【解析】
由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
8、C
【解析】
∵,
∴,
∴.
故选C.
9、D
【解析】
根据平行线的性质以及角平分线的定义,即可得到正确的结论.
【详解】
解:
,故A选项正确;
又
故B选项正确;
平分
,
,故C选项正确;
,故选项错误;
故选.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
10、C
【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.
【详解】
在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.
【点睛】
本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.
11、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.
故选:C.
【点睛】
掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.
12、D
【解析】
cos30°=.
故选D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.
【详解】
△=(﹣8)2﹣4m=0,
解得m=1,
故答案为:1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
14、1
【解析】
根据函数值相等两点关于对称轴对称,可得答案.
【详解】
由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.
故答案为:1.
【点睛】
本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.
15、1
【解析】
【分析】根据根与系数的关系结合x1+x2=x1•x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值.
【详解】∵x2﹣2kx+k2﹣k=0的两个实数根分别是x1、x2,
∴x1+x2=2k,x1•x2=k2﹣k,
∵x12+x22=1,
∴(x1+x2)2-2x1x2=1,
(2k)2﹣2(k2﹣k)=1,
2k2+2k﹣1=0,
k2+k﹣2=0,
k=﹣2或1,
∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,
k≥0,
∴k=1,
∴x1•x2=k2﹣k=0,
∴x12﹣x1x2+x22=1﹣0=1,
故答案为:1.
【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式△≥0”是解题的关键.
16、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
【点睛】
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
17、5.2
【解析】
分析:首先根据平均数求出x的值,然后根据方差的计算法则进行计算即可得出答案.
详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8,
∴方差为:.
点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键.
18、
【解析】
设扇形的圆心角为n°,则根据扇形的弧长公式有: ,解得
所以
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
20、1千米/时
【解析】
设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.
【详解】
设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,
根据题意得:6(20﹣x)=1(20+x),
解得:x=1.
答:水流的速度是1千米/时.
【点睛】
本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.
21、证明见解析.
【解析】
试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.
试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.
考点:1.全等三角形的判定与性质;2.平行四边形的性质.
22、(1)m=﹣,n=25;(2)18,W最大=968;(3)12天.
【解析】
【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;
(2)在(1)的基础上分段表示利润,讨论最值;
(3)分别在(2)中的两个函数取值范围内讨论利润不低于870的天数,注意天数为正整数.
【详解】(1)当第12天的售价为32元/件,代入y=mx﹣76m得
32=12m﹣76m,
解得m=,
当第26天的售价为25元/千克时,代入y=n,
则n=25,
故答案为m=,n=25;
(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16,
当1≤x<20时,
W=(4x+16)(x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968,
∴当x=18时,W最大=968,
当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112,
∵28>0,
∴W随x的增大而增大,
∴当x=30时,W最大=952,
∵968>952,
∴当x=18时,W最大=968;
(3)当1≤x<20时,令﹣2x2+72x+320=870,
解得x1=25,x2=11,
∵抛物线W=﹣2x2+72x+320的开口向下,
∴11≤x≤25时,W≥870,
∴11≤x<20,
∵x为正整数,
∴有9天利润不低于870元,
当20≤x≤30时,令28x+112≥870,
解得x≥27,
∴27≤x≤30
∵x为正整数,
∴有3天利润不低于870元,
∴综上所述,当天利润不低于870元的天数共有12天.
【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.
23、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【解析】
试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;
(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.
试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,
根据题意,2000x+2500(30-x)=68000,
解得x=14,
∴30-x=16,
答:种植A种生姜14亩,种植B种生姜16亩;
(2)由题意得,x≥(30-x),解得x≥10,
设全部收购该基地生姜的年总收入为y元,则
y=8×2000x+7×2500(30-x)=-1500x+525000,
∵y随x的增大而减小,∴当x=10时,y有最大值,
此时,30-x=20,y的最大值为510000元,
答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.
【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.
24、 (1)见解析;(2)见解析.
【解析】
连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是⊙O的切线,若证AD•CE=DE•DF,只要征得△ADF∽△DEC即可.在第一问中只能证得∠EDC=∠DAF=90°,所以在第二问中只要证得∠DEC=∠ADF即可解答此题.
【详解】
(1)连接AF,
∵DF是⊙O的直径,
∴∠DAF=90°,
∴∠F+∠ADF=90°,
∵∠F=∠ABD,∠ADG=∠ABD,
∴∠F=∠ADG,
∴∠ADF+∠ADG=90°
∴直线CD是⊙O的切线
∴∠EDC=90°,
∴∠EDC=∠DAF=90°;
(2)选取①完成证明
∵直线CD是⊙O的切线,
∴∠CDB=∠A.
∵∠CDB=∠CEB,
∴∠A=∠CEB.
∴AD∥EC.
∴∠DEC=∠ADF.
∵∠EDC=∠DAF=90°,
∴△ADF∽△DEC.
∴AD:DE=DF:EC.
∴AD•CE=DE•DF.
【点睛】
此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识.注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出.还要注意构造直径所对的圆周角是圆中的常见辅助线.
25、3.05米.
【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
∴sin60°=,
∴FG=2.165,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
考点:解直角三角形的应用.
26、证明见解析
【解析】
证明:(1)∵DF∥BE,
∴∠DFE=∠BEF.
又∵AF=CE,DF=BE,
∴△AFD≌△CEB(SAS).
(2)由(1)知△AFD≌△CEB,
∴∠DAC=∠BCA,AD=BC,
∴AD∥BC.
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.
27、(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【解析】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;
(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.
【详解】
(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.
根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,
解得:x≥14,
∴商场至少购进乙种电冰箱14台;
(2)由题意得:2x≤80﹣3x且x≥14,
∴14≤x≤16,
∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,
∴W随x的增大而减小,
∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,
此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.
【点睛】
本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.
2023年黑龙江省牡丹江市中考数学一模试卷(含解析): 这是一份2023年黑龙江省牡丹江市中考数学一模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年黑龙江省牡丹江市中考数学一模试卷(含解析): 这是一份2023年黑龙江省牡丹江市中考数学一模试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2021-2022学年黑龙江省鸡西市鸡东县重点名校中考数学四模试卷含解析: 这是一份2021-2022学年黑龙江省鸡西市鸡东县重点名校中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,如图,过点A等内容,欢迎下载使用。