黑龙江省哈尔滨尚志市2022年中考联考数学试卷含解析
展开
这是一份黑龙江省哈尔滨尚志市2022年中考联考数学试卷含解析,共21页。试卷主要包含了下列各式计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.下列运算正确的是( )
A.(a2)4=a6 B.a2•a3=a6 C. D.
2.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是( )
A.50和48 B.50和47 C.48和48 D.48和43
3.下列运算正确的是( )
A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
4.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是( )
A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c
5.有一个数用科学记数法表示为5.2×105,则这个数是( )
A.520000 B. C.52000 D.5200000
6.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
7.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了( )
A.0.9米 B.1.3米 C.1.5米 D.2米
8.观察下列图形,其中既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
9.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
10.下列各式计算正确的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是_____.
12.下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
其中合理的有______(只填写序号).
13.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C,若∠ACB=30°,AB=,则阴影部分的面积是___.
14.不等式组的解集是__________.
15.分解因式:m2n﹣2mn+n= .
16.边长为3的正方形网格中,⊙O的圆心在格点上,半径为3,则tan∠AED=_______.
三、解答题(共8题,共72分)
17.(8分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
18.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
19.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
20.(8分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC.
(1)求证:四边形DBEC是菱形;
(2)若AD=3, DF=1,求四边形DBEC面积.
21.(8分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,
(1)求证:CB平分∠ACE;
(2)若BE=3,CE=4,求O的半径.
22.(10分)如图所示,一堤坝的坡角,坡面长度米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角,则此时应将坝底向外拓宽多少米?(结果保留到 米)(参考数据:,,)
23.(12分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是 ;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.
24.随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;
(2)将条形统计图补充完整;
(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?
(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.
【详解】
A、原式=a8,所以A选项错误;
B、原式=a5,所以B选项错误;
C、原式= ,所以C选项正确;
D、与不能合并,所以D选项错误.
故选:C.
【点睛】
本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.
2、A
【解析】
由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
【详解】
由折线统计图,得:42,43,47,48,49,50,50,
7次测试成绩的众数为50,中位数为48,
故选:A.
【点睛】
本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.
3、B
【解析】
利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
【详解】
解:A、a2与a3不能合并,所以A选项错误;
B、原式=a6÷a6=1,所以A选项正确;
C、原式=a5,所以C选项错误;
D、原式=2+2+3=5+2,所以D选项错误.
故选:B.
【点睛】
本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
4、A
【解析】
根据数轴上点的位置确定出a,b,c的范围,判断即可.
【详解】
由数轴上点的位置得:a<b<0<c,
∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.
故选A.
【点睛】
考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.
5、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
5.2×105=520000,
故选A.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、A
【解析】
试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.
故选A.
考点:轴对称图形
7、B
【解析】
试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.
解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,
∴AC=2,
∵BD=0.9,
∴CD=2.1.
在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,
∴EC=0.7,
∴AE=AC﹣EC=2﹣0.7=1.2.
故选B.
考点:勾股定理的应用.
8、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;
B、是轴对称图形,不是中心对称图形.故本选项错误;
C、是轴对称图形,也是中心对称图形.故本选项正确;
D、既不是轴对称图形,也不是中心对称图形.故本选项错误.
故选C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
9、D
【解析】
先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.
【详解】
解:∵反比例函数与正比例函数的图象均关于原点对称,
∴A、B两点关于原点对称,
∵点A的横坐标为1,∴点B的横坐标为-1,
∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,
∴当y1>y1时,x的取值范围是-1<x<0或x>1.
故选:D.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.
10、C
【解析】
解:A.2a与2不是同类项,不能合并,故本选项错误;
B.应为,故本选项错误;
C.,正确;
D.应为,故本选项错误.
故选C.
【点睛】
本题考查幂的乘方与积的乘方;同底数幂的乘法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
【分析】由折叠的性质可知AE=CE,再证明△BCE是等腰三角形即可得到BC=CE,问题得解.
【详解】∵AB=AC,∠A=36°,
∴∠B=∠ACB==72°,
∵将△ABC中的∠A沿DE向下翻折,使点A落在点C处,
∴AE=CE,∠A=∠ECA=36°,
∴∠CEB=72°,
∴BC=CE=AE=,
故答案为.
【点睛】本题考查了等腰三角形的判断和性质、折叠的性质以及三角形内角和定理的运用,证明△BCE是等腰三角形是解题的关键.
12、②③
【解析】
大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.根据事件的类型及概率的意义找到正确选项即可.
【详解】
解:①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,大约有50次“正面朝上”,此结论错误;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是,此结论正确;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85,此结论正确;
故答案为:②③.
【点睛】
本题考查了概率的意义,解题的关键在于掌握计算公式.
13、﹣
【解析】
连接OB.
∵AB是⊙O切线,
∴OB⊥AB,
∵OC=OB,∠C=30°,
∴∠C=∠OBC=30°,
∴∠AOB=∠C+∠OBC=60°,
在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,
∴OB=1,
∴S阴=S△ABO﹣S扇形OBD=×1×﹣ =﹣ .
14、x≥1
【解析】
分析:分别求出两个不等式的解,从而得出不等式组的解集.
详解:解不等式①可得:x≥1, 解不等式②可得:x>-3, ∴不等式组的解为x≥1.
点睛:本题主要考查的是不等式组的解集,属于基础题型.理解不等式的性质是解决这个问题的关键.
15、n(m﹣1)1.
【解析】
先提取公因式n后,再利用完全平方公式分解即可
【详解】
m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
16、
【解析】
根据同弧或等弧所对的圆周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.
【详解】
解: ∵∠AED=∠ABD (同弧所对的圆周角相等),
∴tan∠AED=tanB=.
故答案为:.
【点睛】
本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.
三、解答题(共8题,共72分)
17、(1)证明见解析(2)当四边形BEDF是菱形时,四边形AGBD是矩形;证明见解析;
【解析】
(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明全等;
(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.
【详解】
解:证明:∵四边形是平行四边形,
∴,,.
∵点、分别是、的中点,
∴,.
∴.
在和中,
,
∴.
解:当四边形是菱形时,四边形是矩形.
证明:∵四边形是平行四边形,
∴.
∵,
∴四边形是平行四边形.
∵四边形是菱形,
∴.
∵,
∴.
∴,.
∵,
∴.
∴.
即.
∴四边形是矩形.
【点睛】
本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.
18、 (1) B(-1.2);(2) y=;(3)见解析.
【解析】
(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;
(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;
(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.
【详解】
(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,
∵△AOB为等腰三角形,
∴AO=BO,
∵∠AOB=90°,
∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
∴∠AOC=∠OBD,
在△ACO和△ODB中
∴△ACO≌△ODB(AAS),
∵A(2,1),
∴OD=AC=1,BD=OC=2,
∴B(-1,2);
(2)∵抛物线过O点,
∴可设抛物线解析式为y=ax2+bx,
把A、B两点坐标代入可得,解得,
∴经过A、B、O原点的抛物线解析式为y=x2-x;
(3)∵四边形ABOP,
∴可知点P在线段OA的下方,
过P作PE∥y轴交AO于点E,如图2,
设直线AO解析式为y=kx,
∵A(2,1),
∴k=,
∴直线AO解析式为y=x,
设P点坐标为(t,t2-t),则E(t,t),
∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
∴S△AOP=PE×2=PE═-(t-1)2+,
由A(2,1)可求得OA=OB=,
∴S△AOB=AO•BO=,
∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,
∵-<0,
∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),
综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).
【点睛】
本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
19、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【解析】
(1)由待定系数法即可得到函数的解析式;
(2)根据销售量×每千克利润=总利润列出方程求解即可;
(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
【详解】
(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100;
(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵为了让顾客得到更大的实惠,
∴x=9,
答:这种干果每千克应降价9元;
(3)该干果每千克降价x元,商贸公司获得利润是w元,
根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴当x=5时,
故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【点睛】
本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
20、 (1)见解析;(1)4
【解析】
(1)根据平行四边形的判定定理首先推知四边形DBEC为平行四边形,然后由直角三角形斜边上的中线等于斜边的一半得到其邻边相等:CD=BD,得证;
(1)由三角形中位线定理和勾股定理求得AB边的长度,然后根据菱形的性质和三角形的面积公式进行解答.
【详解】
(1)证明:∵CE∥DB,BE∥DC,
∴四边形DBEC为平行四边形.
又∵Rt△ABC中,∠ABC=90°,点D是AC的中点,
∴CD=BD=AC,
∴平行四边形DBEC是菱形;
(1)∵点D,F分别是AC,AB的中点,AD=3,DF=1,
∴DF是△ABC的中位线,AC=1AD=6,S△BCD=S△ABC
∴BC=1DF=1.
又∵∠ABC=90°,
∴AB= = = 4.
∵平行四边形DBEC是菱形,
∴S四边形DBEC=1S△BCD=S△ABC=AB•BC=×4×1=4.
点睛:本题考查了菱形的判定与性质,直角三角形斜边上的中线等于斜边的一半,三角形中位线定理.由点D是AC的中点,得到CD=BD是解答(1)的关键,由菱形的性质和三角形的面积公式得到S四边形DBEC=S△ABC是解(1)的关键.
21、(1)证明见解析;(2).
【解析】
试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.
(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.
(1)证明:如图1,连接OB,
∵AB是⊙0的切线,
∴OB⊥AB,
∵CE丄AB,
∴OB∥CE,
∴∠1=∠3,
∵OB=OC,
∴∠1=∠2,
∴∠2=∠3,
∴CB平分∠ACE;
(2)如图2,连接BD,
∵CE丄AB,
∴∠E=90°,
∴BC===5,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠E=∠DBC,
∴△DBC∽△CBE,
∴,
∴BC2=CD•CE,
∴CD==,
∴OC==,
∴⊙O的半径=.
考点:切线的性质.
22、6.58米
【解析】
试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.
试题解析:过A点作AE⊥CD于E. 在Rt△ABE中,∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,
BE=AB•cos62°=25×0.47=11.75米, 在Rt△ADE中,∠ADB=50°, ∴DE==18米,
∴DB=DE﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.
考点:解直角三角形的应用-坡度坡角问题.
23、(1);(2);(3)
【解析】
(1)OA=6,即BC=6,代入,即可得出点B的坐标
(2)将点B的坐标代入直线l中求出k即可得出解析式
(3)一次函数,必经过,要使y随x的增大而减小,即y值为,分别代入即可求出k的值.
【详解】
解:∵OA=6,矩形OABC中,BC=OA
∴BC=6
∵点B在直线上,
,解得x=8
故点B的坐标为(8,6)
故答案为(8,6)
(2)把点的坐标代入得,
解得:
∴
(3))∵一次函数,必经过),要使y随x的增大而减小
∴y值为
∴代入,
解得.
【点睛】
本题主要考待定系数法求一次函数解析式,关键要灵活运用一次函数图象上点的坐标特征进行解题.
24、 (1)120,54;(2)补图见解析;(3)660名;(4).
【解析】
(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;
(2)先计算出喜欢使用短信的人数,然后补全条形统计图;
(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;
(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
【详解】
解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,
故答案为120、54;
(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),
条形统计图为:
(3)1200×=660,
所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;
(4)画树状图为:
共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,
所以甲乙两名同学恰好选中同一种沟通方式的概率.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.
相关试卷
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共26页。
这是一份黑龙江省哈尔滨尚志市市级名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列事件中必然发生的事件是等内容,欢迎下载使用。
这是一份黑龙江省哈尔滨尚志市2021-2022学年中考联考数学试卷含解析,共18页。试卷主要包含了下列式子一定成立的是,tan30°的值为等内容,欢迎下载使用。