湖北洪湖市瞿家湾中学2021-2022学年中考数学模拟预测题含解析
展开
这是一份湖北洪湖市瞿家湾中学2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了我市连续7天的最高气温为,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,在矩形ABCD中,AB=,AD=2,以点A为圆心,AD的长为半径的圆交BC边于点E,则图中阴影部分的面积为( )
A. B. C. D.
2.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
3.-5的相反数是( )
A.5 B. C. D.
4.下图是某几何体的三视图,则这个几何体是( )
A.棱柱 B.圆柱 C.棱锥 D.圆锥
5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
A.28°,30° B.30°,28° C.31°,30° D.30°,30°
6.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )
A.2mn B.(m+n)2 C.(m-n)2 D.m2-n2
7.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )
A. B. C. D.
8.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
9.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.32
10.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
12.如图,在△ABC中,AB=AC,D、E、F分别为AB、BC、AC的中点,则下列结论:①△ADF≌△FEC;②四边形ADEF为菱形;③.其中正确的结论是____________.(填写所有正确结论的序号)
13.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.
14.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.
15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.
16.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______
三、解答题(共8题,共72分)
17.(8分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.
(1)求证:;
(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
18.(8分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
19.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
20.(8分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长.
21.(8分)对x,y定义一种新运算T,规定T(x,y)=(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.
如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)= (用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.
①求a与b的值;
②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.
22.(10分)如图,,,,求证:。
23.(12分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|
24.探究:
在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n(n为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.
拓展:
嘉嘉给琪琪出题:
“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”
琪琪的思考:“在这个问题上,线段总数不可能为30”
琪琪的思考对吗?为什么?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先利用三角函数求出∠BAE=45°,则BE=AB=,∠DAE=45°,然后根据扇形面积公式,利用图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD进行计算即可.
【详解】
解:∵AE=AD=2,而AB=,∴cos∠BAE==,∴∠BAE=45°,∴BE=AB=,∠BEA=45°.
∵AD∥BC,∴∠DAE=∠BEA=45°,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EAD=2×﹣××﹣=2﹣1﹣.
故选B.
【点睛】
本题考查了扇形面积的计算.阴影面积常用的方法:直接用公式法;和差法;割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.
2、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
3、A
【解析】
由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.
故选A.
4、D
【解析】
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
【详解】
由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.
故选D.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.
5、D
【解析】
试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
30出现了3次,出现的次数最多,则众数是30;
故选D.
考点:众数;算术平均数.
6、C
【解析】
解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.
又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.
故选C.
7、C
【解析】
混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.
【详解】
设瓶子的容积即酒精与水的和是1,
则纯酒精之和为:1×+1×=+,
水之和为:+,
∴混合液中的酒精与水的容积之比为:(+)÷(+)=,
故选C.
【点睛】
本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.
8、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
9、A
【解析】
∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,AD//BC,
∴△BEF∽△CDF,△BEF∽△AED,
∴ ,
∵BE:AB=2:3,AE=AB+BE,
∴BE:CD=2:3,BE:AE=2:5,
∴ ,
∵S△BEF=4,
∴S△CDF=9,S△AED=25,
∴S四边形ABFD=S△AED-S△BEF=25-4=21,
∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,
故选A.
【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.
10、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
12、①②③
【解析】
①根据三角形的中位线定理可得出AD=FE、AF=FC、DF=EC,进而可证出△ADF≌△FEC(SSS),结论①正确;
②根据三角形中位线定理可得出EF∥AB、EF=AD,进而可证出四边形ADEF为平行四边形,由AB=AC结合D、F分别为AB、AC的中点可得出AD=AF,进而可得出四边形ADEF为菱形,结论②正确;
③根据三角形中位线定理可得出DF∥BC、DF=BC,进而可得出△ADF∽△ABC,再利用相似三角形的性质可得出,结论③正确.此题得解.
【详解】
解:①∵D、E、F分别为AB、BC、AC的中点,
∴DE、DF、EF为△ABC的中位线,
∴AD=AB=FE,AF=AC=FC,DF=BC=EC.
在△ADF和△FEC中,
,
∴△ADF≌△FEC(SSS),结论①正确;
②∵E、F分别为BC、AC的中点,
∴EF为△ABC的中位线,
∴EF∥AB,EF=AB=AD,
∴四边形ADEF为平行四边形.
∵AB=AC,D、F分别为AB、AC的中点,
∴AD=AF,
∴四边形ADEF为菱形,结论②正确;
③∵D、F分别为AB、AC的中点,
∴DF为△ABC的中位线,
∴DF∥BC,DF=BC,
∴△ADF∽△ABC,
∴,结论③正确.
故答案为①②③.
【点睛】
本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键.
13、3
【解析】
试题分析:如图,∵CD∥AB∥MN,
∴△ABE∽△CDE,△ABF∽△MNF,
∴,
即,
解得:AB=3m,
答:路灯的高为3m.
考点:中心投影.
14、-1
【解析】
将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.
【详解】
解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,
∴a2-1=2,
∴a=±1,
∵a-1≠2,
∴a≠1,
∴a的值为-1.
故答案为-1.
【点睛】
本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.
15、3
【解析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.
【详解】
∵四边形ABCD是矩形,∴∠A=90°.
∵AB=8,AD=6,∴BD1.
∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.
故答案为:3.
【点睛】
本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
16、1
【解析】
根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
【详解】
∵DE∥BC,
∴.
∵,CE=11,
∴,解得AE=1.
故答案为1.
【点睛】
本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
三、解答题(共8题,共72分)
17、(1) 证明见解析;(2) 证明见解析.
【解析】
分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
(2)设FM=a,则BF=3a,BM=4a.
由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.
点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
18、 (1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)
【解析】
(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.
【详解】
解:(1)、∵抛物线的顶点为A(1,4),
∴设抛物线的解析式y=a(x﹣1)2+4,
把点B(0,3)代入得,a+4=3,
解得a=﹣1,
∴抛物线的解析式为y=﹣(x﹣1)2+4;
(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;
令y=0,则0=﹣(x﹣1)2+4,
∴x=﹣1或x=3, ∴C(﹣1,0),D(3,0);
∴CD=4,
∴S△BCD=CD×|yB|=×4×3=6;
(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,
∵S△PCD=S△BCD,
∴S△PCD=CD×|yP|=×4×|yP|=3,
∴|yP|= ,
∵点P在x轴上方的抛物线上,
∴yP>0,
∴yP= ,
∵抛物线的解析式为y=﹣(x﹣1)2+4;
∴=﹣(x﹣1)2+4,
∴x=1±,
∴P(1+ , ),或P(1﹣,).
【点睛】
本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.
19、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
【详解】
(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直线CD的解析式为y=﹣x+3,
解方程组,解得
或,
∴D点坐标为(,);
(2)存在.
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
当m=时,△CDP的面积存在最大值,最大值为;
(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
综上所述,m的值为或或.
【点睛】
本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
20、(1)证明见解析;(2);(3)1.
【解析】
(1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
(2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
(3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
【详解】
解:(1)证明:连接OM,如图1,
∵BM是∠ABC的平分线,
∴∠OBM=∠CBM,
∵OB=OM,
∴∠OBM=∠OMB,
∴∠CBM=∠OMB,
∴OM∥BC,
∵AB=AC,AE是∠BAC的平分线,
∴AE⊥BC,
∴OM⊥AE,
∴AE为⊙O的切线;
(2)解:设⊙O的半径为r,
∵AB=AC=6,AE是∠BAC的平分线,
∴BE=CE=BC=2,
∵OM∥BE,
∴△AOM∽△ABE,
∴,即,解得r=,
即设⊙O的半径为;
(3)解:作OH⊥BE于H,如图,
∵OM⊥EM,ME⊥BE,
∴四边形OHEM为矩形,
∴HE=OM=,
∴BH=BE﹣HE=2﹣=,
∵OH⊥BG,
∴BH=HG=,
∴BG=2BH=1.
21、(1) ;(2)①a=1,b=-1,②m=2.
【解析】
(1)根据题目中的新运算法则计算即可;
(2)①根据题意列出方程组即可求出a,b的值;
②先分别算出T(3m﹣3,m)与T(m,3m﹣3)的值,再根据求出的值列出等式即可得出结论.
【详解】
解:(1)T(4,﹣1)=
=;
故答案为;
(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,
∴
解得
②解法一:
∵a=1,b=﹣1,且x+y≠0,
∴T(x,y)===x﹣y.
∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,
T(m,3m﹣3)=m﹣3m+3=﹣2m+3.
∵T(3m﹣3,m)=T(m,3m﹣3),
∴2m﹣3=﹣2m+3,
解得,m=2.
解法二:由解法①可得T(x,y)=x﹣y,
当T(x,y)=T(y,x)时,
x﹣y=y﹣x,
∴x=y.
∵T(3m﹣3,m)=T(m,3m﹣3),
∴3m﹣3=m,
∴m=2.
【点睛】
本题关键是能够把新运算转化为我们学过的知识,并应用一元一次方程或二元一次方程进行解题..
22、见解析
【解析】
据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.
【详解】
证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.
∵在△ABC和△AED中,
∴△ABC≌△AED(AAS).
【点睛】
此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角
23、4
【解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.
【详解】
(﹣2)0+()﹣1+4cos30°﹣|4﹣|
=1+3+4×﹣(4﹣2)
=4+2﹣4+2
=4.
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
24、探究:(1)3,1;(2);(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.
【解析】
探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;
(2)由(1)的结论结合参会人数为n,即可得出结论;
(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;
拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.
【详解】
探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.
故答案为3;1.
(2)∵参加聚会的人数为n(n为正整数),
∴每人需跟(n-1)人握手,
∴握手总数为.
故答案为.
(3)依题意,得:=28,
整理,得:n2-n-56=0,
解得:n1=8,n2=-7(舍去).
答:参加聚会的人数为8人.
拓展:琪琪的思考对,理由如下:
如果线段数为2,则由题意,得:=2,
整理,得:m2-m-60=0,
解得m1=,m2=(舍去).
∵m为正整数,
∴没有符合题意的解,
∴线段总数不可能为2.
【点睛】
本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.
相关试卷
这是一份湖北省荆州市洪湖市瞿家湾中学2023-2024学年数学八年级第一学期期末预测试题含答案,共7页。试卷主要包含了下列说法正确的是,已知,则的值是,下列代数式中,是分式的为等内容,欢迎下载使用。
这是一份湖北洪湖市瞿家湾中学2023-2024学年八上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,直线过点,,则的值是等内容,欢迎下载使用。
这是一份2022-2023学年湖北省洪湖市瞿家湾中学数学七年级第二学期期末预测试题含答案,共7页。试卷主要包含了已知两点的坐标分别是,将点P等内容,欢迎下载使用。