搜索
    上传资料 赚现金
    英语朗读宝

    湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析

    湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析第1页
    湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析第2页
    湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析

    展开

    这是一份湖北省十堰市丹江口市重点中学2022年中考三模数学试题含解析,共21页。试卷主要包含了下列计算正确的是,近似数精确到等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    2.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是(  )

    A.90° B.60° C.45° D.30°
    3.下列运算正确的是(  )
    A.a2•a3=a6 B.a3+a2=a5 C.(a2)4=a8 D.a3﹣a2=a
    4.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是(  )
    A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
    5.下列计算正确的是(  )
    A.a2+a2=a4 B.a5•a2=a7 C.(a2)3=a5 D.2a2﹣a2=2
    6.据《关于“十三五”期间全面深入推进教育信息化工作的指导意见》显示,全国6000万名师生已通过“网络学习空间”探索网络条件下的新型教学、学习与教研模式,教育公共服务平台基本覆盖全国学生、教职工等信息基础数据库,实施全国中小学教师信息技术应用能力提升工程.则数字6000万用科学记数法表示为(  )
    A.6×105 B.6×106 C.6×107 D.6×108
    7.国家主席习近平在2018年新年贺词中说道:“安得广厦千万间,大庇天下寒士俱欢颜!2017年我国3400000贫困人口实现易地扶贫搬迁、有了温暖的新家.”其中3400000用科学记数法表示为(  )
    A.0.34×107 B.3.4×106 C.3.4×105 D.34×105
    8.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    9.下列式子中,与互为有理化因式的是(  )
    A. B. C. D.
    10.近似数精确到( )
    A.十分位 B.个位 C.十位 D.百位
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.

    12.观察如图中的数列排放顺序,根据其规律猜想:第10行第8个数应该是_____.

    13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.

    14.已知b是a,c的比例中项,若a=4,c=16,则b=________.
    15.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.

    16.如图,点A(3,n)在双曲线y=上,过点A作 AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是 .

    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系中,O为原点,点A(3,0),点B(0,4),把△ABO绕点A顺时针旋转,得△AB′O′,点B,O旋转后的对应点为B′,O.
    (1)如图1,当旋转角为90°时,求BB′的长;
    (2)如图2,当旋转角为120°时,求点O′的坐标;
    (3)在(2)的条件下,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标.(直接写出结果即可)

    18.(8分)先化简,再在1,2,3中选取一个适当的数代入求值.
    19.(8分)如图,在△ABC中,∠ABC=90°,D,E分别为AB,AC的中点,延长DE到点F,使EF=2DE.
    (1)求证:四边形BCFE是平行四边形;
    (2)当∠ACB=60°时,求证:四边形BCFE是菱形.

    20.(8分)如图,在平面直角坐标系中,抛物线的图象经过和两点,且与轴交于,直线是抛物线的对称轴,过点的直线与直线相交于点,且点在第一象限.

    (1)求该抛物线的解析式;
    (2)若直线和直线、轴围成的三角形面积为6,求此直线的解析式;
    (3)点在抛物线的对称轴上,与直线和轴都相切,求点的坐标.
    21.(8分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是   ;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.

    22.(10分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
    (1)求购进A、B两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
    (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
    23.(12分)解不等式组
    24.如图,分别与相切于点,点在上,且,,垂足为.
    求证:;若的半径,,求的长



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    2、B
    【解析】
    首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
    【详解】

    连接AB,
    根据题意得:OB=OA=AB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°.
    故答案选:B.
    【点睛】
    本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
    3、C
    【解析】
    根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可.
    【详解】
    A、a2•a3=a5,故原题计算错误;
    B、a3和a2不是同类项,不能合并,故原题计算错误;
    C、(a2)4=a8,故原题计算正确;
    D、a3和a2不是同类项,不能合并,故原题计算错误;
    故选:C.
    【点睛】
    此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则.
    4、A
    【解析】
    分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
    B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
    C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
    D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
    综上即可得出结论.
    详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
    ∴x1≠x2,结论A正确;
    B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1+x2=a,
    ∵a的值不确定,
    ∴B结论不一定正确;
    C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1•x2=﹣2,结论C错误;
    D、∵x1•x2=﹣2,
    ∴x1<0,x2>0,结论D错误.
    故选A.
    点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
    5、B
    【解析】
    根据整式的加减乘除乘方运算法则逐一运算即可。
    【详解】
    A. ,故A选项错误。
    B. ,故B选项正确。
    C.,故C选项错误。
    D. ,故D选项错误。
    故答案选B.
    【点睛】
    本题考查整式加减乘除运算法则,只需熟记法则与公式即可。
    6、C
    【解析】
    将一个数写成的形式,其中,n是正数,这种记数的方法叫做科学记数法,根据定义解答即可.
    【详解】
    解:6000万=6×1.
    故选:C.
    【点睛】
    此题考查科学记数法,当所表示的数的绝对值大于1时,n为正整数,其值等于原数中整数部分的数位减去1,当要表示的数的绝对值小于1时,n为负整数,其值等于原数中第一个非零数字前面所有零的个数的相反数,正确掌握科学记数法中n的值的确定是解题的关键.
    7、B
    【解析】
    解:3400000=.
    故选B.
    8、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    9、B
    【解析】
    直接利用有理化因式的定义分析得出答案.
    【详解】
    ∵()(,)
    =12﹣2,
    =10,
    ∴与互为有理化因式的是:,
    故选B.
    【点睛】
    本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.
    10、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.
    【详解】
    解:如图,设AH=x,GB=y,

    ∵EH∥BC,


    ∵FG∥AC,


    由①②可得x=,y=2,
    ∴AC=,BC=7,
    ∴S△ABC=,
    故答案为.
    【点睛】
    本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.
    12、1
    【解析】
    由n行有n个数,可得出第10行第8个数为第1个数,结合奇数为正偶数为负,即可求出结论.
    【详解】
    解:第1行1个数,第2行2个数,第3行3个数,…,
    ∴第9行9个数,
    ∴第10行第8个数为第1+2+3+…+9+8=1个数.
    又∵第2n﹣1个数为2n﹣1,第2n个数为﹣2n,
    ∴第10行第8个数应该是1.
    故答案为:1.
    【点睛】
    本题考查了规律型中数字的变化类,根据数的变化找出变化规律是解题的关键.
    13、1.
    【解析】
    根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD=BC=8,AB=CD=6,∠ABC=90°,

    ∵AO=OC,

    ∵AO=OC,AM=MD=4,

    ∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.
    故答案为:1.

    【点睛】
    本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.
    14、±8
    【解析】
    根据比例中项的定义即可求解.
    【详解】
    ∵b是a,c的比例中项,若a=4,c=16,
    ∴b2=ac=4×16=64,
    ∴b=±8,
    故答案为±8
    【点睛】
    此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
    15、
    【解析】
    由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
    【详解】
    设MN与OP交于点E,

    ∵点O、P的距离为4,
    ∴OP=4
    ∵折叠
    ∴MN⊥OP,EO=EP=2,
    在Rt△OME中,ME=
    在Rt△ONE中,NE=
    ∴MN=ME-NE=2-
    故答案为2-
    【点睛】
    本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
    16、2.
    【解析】
    先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.
    【详解】
    由点A(3,n)在双曲线y=上得,n=2.∴A(3,2).
    ∵线段OA的垂直平分线交OC于点B,∴OB=AB.
    则在△ABC中, AC=2,AB+BC=OB+BC=OC=3,
    ∴△ABC周长的值是2.

    三、解答题(共8题,共72分)
    17、(1)5;(2)O'(,);(3)P'(,).
    【解析】
    (1)先求出AB.利用旋转判断出△ABB'是等腰直角三角形,即可得出结论;
    (2)先判断出∠HAO'=60°,利用含30度角的直角三角形的性质求出AH,OH,即可得出结论;
    (3)先确定出直线O'C的解析式,进而确定出点P的坐标,再利用含30度角的直角三角形的性质即可得出结论.
    【详解】
    解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋转知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;
    (2)如图2,过点O'作O'H⊥x轴于H,由旋转知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();
    (3)由旋转知,AP=AP',∴O'P+AP'=O'P+AP.如图3,作A关于y轴的对称点C,连接O'C交y轴于P,∴O'P+AP=O'P+CP=O'C,此时,O'P+AP的值最小.
    ∵点C与点A关于y轴对称,∴C(﹣3,0).
    ∵O'(),∴直线O'C的解析式为y=x+,令x=0,∴y=,∴P(0,),∴O'P'=OP=,作P'D⊥O'H于D.
    ∵∠B'O'A=∠BOA=90°,∠AO'H=30°,∴∠DP'O'=30°,∴O'D=O'P'=,P'D=O'D=,∴DH=O'H﹣O'D=,O'H+P'D=,∴P'().

    【点睛】
    本题是几何变换综合题,考查了旋转的性质,等腰直角三角形的性质,含30度角的直角三角形的性质,构造出直角三角形是解答本题的关键.
    18、,当x=2时,原式=.
    【解析】
    试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.
    试题解析:
    原式===
    当x=2时,原式=.
    19、(1)见解析;(2)见解析
    【解析】
    (1)由题意易得,EF与BC平行且相等,利用四边形BCFE是平行四边形.
    (2)根据菱形的判定证明即可.
    【详解】
    (1)证明::∵D.E为AB,AC中点
    ∴DE为△ABC的中位线,DE=BC,
    ∴DE∥BC,
    即EF∥BC,
    ∵EF=BC,
    ∴四边形BCEF为平行四边形.
    (2)∵四边形BCEF为平行四边形,
    ∵∠ACB=60°,
    ∴BC=CE=BE,
    ∴四边形BCFE是菱形.

    【点睛】
    本题考查平行四边形的判定和性质、菱形的判定、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    20、(1);(2);(3)或.
    【解析】
    (1)根据图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),可利用待定系数法求出二次函数解析式;
    (2)根据直线AB与抛物线的对称轴和x轴围成的三角形面积为6,得出AC,BC的长,得出B点的坐标,即可利用待定系数法求出一次函数解析式;
    (3)利用三角形相似求出△ABC∽△PBF,即可求出圆的半径,即可得出P点的坐标.
    【详解】
    (1)抛物线的图象经过,,,
    把,,代入得:

    解得:,
    抛物线解析式为;
    (2)抛物线改写成顶点式为,
    抛物线对称轴为直线,
    ∴对称轴与轴的交点C的坐标为


    设点B的坐标为,,
    则,


    ∴点B的坐标为,
    设直线解析式为:,
    把,代入得:,
    解得:,
    直线解析式为:.
    (3)①∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
    设⊙P与AB相切于点F,与x轴相切于点C,如图1;

    ∴PF⊥AB,AF=AC,PF=PC,
    ∵AC=1+2=3,BC=4,
    ∴AB==5,AF=3,
    ∴BF=2,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,);
    ②设⊙P与AB相切于点F,与轴相切于点C,如图2:

    ∴PF⊥AB,PF=PC,
    ∵AC=3,BC=4, AB=5,
    ∵∠FBP=∠CBA,
    ∠BFP=∠BCA=90,
    ∴△ABC∽△PBF,
    ∴,
    ∴,
    解得:,
    ∴点P的坐标为(2,-6),
    综上所述,与直线和都相切时,
    或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一函数的解析式、二次函数的解析式及相似三角形的判定和性质、切线的判定和性质,根据题意画出图形,利用数形结合求解是解答此题的关键.
    21、(1);(2).
    【解析】
    (1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;
    (2)画出树状图,然后根据概率公式列式计算即可得解.
    【详解】
    (1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,
    ∴抽到的卡片既是中心对称图形又是轴对称图形的概率是;
    (2)根据题意画出树状图如下:

    一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,
    所以,P(抽出的两张卡片的图形是中心对称图形).
    【点睛】
    本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    22、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
    【解析】
    解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
    根据题意得方程组得:,…2分
    解方程组得:,
    ∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;
    (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
    ∴,…6分
    解得:50≤x≤53,…7分
    ∵x 为正整数,
    ∴共有4种进货方案…8分;
    (3)因为B种纪念品利润较高,故B种数量越多总利润越高,
    因此选择购A种50件,B种50件.…10分
    总利润=50×20+50×30=2500(元)
    ∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分
    23、﹣1≤x<1.
    【解析】
    分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
    【详解】
    解不等式2x+1≥﹣1,得:x≥﹣1,
    解不等式x+1>4(x﹣2),得:x<1,
    则不等式组的解集为﹣1≤x<1.
    【点睛】
    此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    24、(1)见解析(2)5
    【解析】
    解:(1)证明:如图,连接,则.

    ∵,
    ∴.
    ∵,
    ∴四边形是平行四边形.
    ∴.
    (2)连接,则.
    ∵,,,
    ∴,.
    ∴.
    ∴.
    设,则.
    在中,有.
    ∴.即.

    相关试卷

    2024年湖北省十堰市丹江口市中考模拟数学试题(原卷版+解析版):

    这是一份2024年湖北省十堰市丹江口市中考模拟数学试题(原卷版+解析版),文件包含2024年湖北省十堰市丹江口市中考模拟数学试题原卷版docx、2024年湖北省十堰市丹江口市中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    2024年湖北省十堰市丹江口市中考模拟数学试题:

    这是一份2024年湖北省十堰市丹江口市中考模拟数学试题,共26页。试卷主要包含了选择题的作答,非选择题的作答等内容,欢迎下载使用。

    2024年湖北省十堰市丹江口市中考模拟数学试题(含答案):

    这是一份2024年湖北省十堰市丹江口市中考模拟数学试题(含答案),共14页。试卷主要包含了选择题的作答,非选择题的作答,下列说法正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map