黑龙江省尚志市田家炳中学2022年中考五模数学试题含解析
展开
这是一份黑龙江省尚志市田家炳中学2022年中考五模数学试题含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A.14 B.7 C.﹣2 D.22.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )A. B. C. D.3.下列命题中假命题是( )A.正六边形的外角和等于 B.位似图形必定相似C.样本方差越大,数据波动越小 D.方程无实数根4.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1095.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )A.平均数为160 B.中位数为158 C.众数为158 D.方差为20.36.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500……击中靶心次数(m)8194492178451……击中靶心频率()0.800.950.880.920.890.90……由此表推断这个射手射击1次,击中靶心的概率是( )A.0.6 B.0.7 C.0.8 D.0.97.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )A.1 B. C. D.8.如图,已知点A、B、C、D在⊙O上,圆心O在∠D内部,四边形ABCO为平行四边形,则∠DAO与∠DCO的度数和是( )A.60° B.45° C.35° D.30°9.据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×10910.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )A.关于x轴对称 B.关于y轴对称C.绕原点逆时针旋转 D.绕原点顺时针旋转二、填空题(共7小题,每小题3分,满分21分)11.一个正多边形的每个内角等于,则它的边数是____.12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM的周长为_____.13.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.14.如图,在⊙O中,点B为半径OA上一点,且OA=13,AB=1,若CD是一条过点B的动弦,则弦CD的最小值为_____.15.如图,已知AB∥CD,=____________16.如图是一组有规律的图案,图案1是由4个组成的,图案2是由7个组成的,那么图案5是由 个组成的,依此,第n个图案是由 个组成的.17.已知一次函数y=ax+b的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.三、解答题(共7小题,满分69分)18.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.19.(5分)先化简,再求值:2(m﹣1)2+3(2m+1),其中m是方程2x2+2x﹣1=0的根20.(8分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?21.(10分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.22.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP= ,AQ= .⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?23.(12分)如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.24.(14分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.【详解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣1的解集为x≥4,∴m+3=4,解得m=1.故选D.考点:不等式的解集2、D【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.3、C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.考点:命题与定理.4、A【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法—表示较大的数.5、D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.6、D【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.7、B【解析】
直接利用概率的意义分析得出答案.【详解】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选B.【点睛】此题主要考查了概率的意义,明确概率的意义是解答的关键.8、A【解析】试题解析:连接OD,∵四边形ABCO为平行四边形,∴∠B=∠AOC,∵点A. B. C.D在⊙O上,由圆周角定理得, 解得, ∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.9、A【解析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】39000000000=3.9×1.故选A.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.10、C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角. 二、填空题(共7小题,每小题3分,满分21分)11、十二【解析】
首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.12、1.【解析】
根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴ ∵AO=OC,∴ ∵AO=OC,AM=MD=4,∴ ∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.13、1.【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.14、10【解析】
连接OC,当CD⊥OA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC,当CD⊥OA时CD的值最小,∵OA=13,AB=1,∴OB=13-1=12,∴BC=,∴CD=5×2=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .15、85°.【解析】如图,过F作EF∥AB,而AB∥CD,∴AB∥CD∥EF,∴∠ABF+∠BFE=180°,∠EFC=∠C,∴∠α=180°−∠ABF+∠C=180°−120°+25°=85°故答案为85°.16、16,3n+1.【解析】
观察不难发现,后一个图案比前一个图案多3个基础图形,然后写出第5个和第n个图案的基础图形的个数即可.【详解】由图可得,第1个图案基础图形的个数为4,第2个图案基础图形的个数为7,7=4+3,第3个图案基础图形的个数为10,10=4+3×2,…,第5个图案基础图形的个数为4+3(5−1)=16,第n个图案基础图形的个数为4+3(n−1)=3n+1.故答案为16,3n+1.【点睛】本题考查了规律型:图形的变化类,根据图像发现规律是解题的关键.17、x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点: 一次函数与一元一次不等式. 三、解答题(共7小题,满分69分)18、这个圆形截面的半径为10cm.【解析】分析:先作辅助线,利用垂径定理求出半径,再根据勾股定理计算.解答:解:如图,OE⊥AB交AB于点D,则DE=4,AB=16,AD=8,设半径为R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.19、2m2+2m+5;1;【解析】
先利用完全平方公式化简,再去括号合并得到最简结果,把已知等式变形后代入值计算即可.【详解】解:原式=2(m2﹣2m+1)+1m+3,=2m2﹣4m+2+1m+3=2m2+2m+5,∵m是方程2x2+2x﹣1=0的根,∴2m2+2m﹣1=0,即2m2+2m=1,∴原式=2m2+2m+5=1.【点睛】此题考查了整式的化简求值以及方程的解,利用整体代换思想可使运算更简单.20、(1) 2x 50-x (2)每件商品降价20元,商场日盈利可达2100元.【解析】
(1) 2x 50-x.(2)解:由题意,得(30+2x)(50-x)=2 100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x=20.答:每件商品降价20元,商场日盈利可达2 100元.21、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.22、(1)AP=2t,AQ=16﹣3t;(2)运动时间为秒或1秒.【解析】
(1)根据路程=速度时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.【详解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴当时,△APQ∽△ABC,即,解得 当时,△APQ∽△ACB,即,解得t=1.∴运动时间为秒或1秒.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.23、(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=a(cm);理由详见解析(3)b(cm)【解析】
(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=AC+BC=( AC+BC)=AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC+CB=acm,∴MN=AC+BC=(AC+BC)=cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∵AC-CB=bcm,∴MN=AC-BC=(AC-BC)=cm.考点:两点间的距离.24、;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】
(1)根据按每千克元的市场价收购了这种苹果千克,此后每天每千克苹果价格会上涨元,进而得出天后每千克苹果的价格为元与的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】根据题意知,;.当时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出与的函数关系是解题关键.
相关试卷
这是一份黑龙江省尚志市田家炳中学2023-2024学年数学八上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,下列代数式中,属于分式的是,下列运算中,结果正确的是等内容,欢迎下载使用。
这是一份2022年江苏省南通市崇川区田家炳中学中考数学五模试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,4的平方根是,若等式x2+ax+19=等内容,欢迎下载使用。
这是一份2022年黑龙江省哈尔滨市尚志市田家炳中学中考数学押题卷含解析,共17页。试卷主要包含了把一副三角板如图等内容,欢迎下载使用。