河南省柘城县张桥乡联合中学2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共10小题,每小题3分,共30分)
1.化简:-,结果正确的是( )
A.1 B. C. D.
2.如图,函数y1=x3与y2=在同一坐标系中的图象如图所示,则当y1<y2时( )
A.﹣1<x<l B.0<x<1或x<﹣1
C.﹣1<x<I且x≠0 D.﹣1<x<0或x>1
3. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )
月用水量(吨)
4
5
6
9
户数(户)
3
4
2
1
A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
4.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
5.下列计算正确的是( )
A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
6.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是( )
A.60° B.35° C.30.5° D.30°
7.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为
A. B.
C. D.
8.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )
A.4 B.3 C. D.
9.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )
A.2 B.3 C.4 D.6
10.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数中,自变量的取值范围是______
12.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
13.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.
14.一个正n边形的中心角等于18°,那么n=_____.
15.如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使三角板的0cm刻度线与量角器的0°线在同一直线上,且直径DC是直角边BC的两倍,过点A作量角器圆弧所在圆的切线,切点为E,则点E在量角器上所对应的度数是____.
16.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
三、解答题(共8题,共72分)
17.(8分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.
18.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(I)如图①,若BC为⊙O的直径,求BD、CD的长;
(II)如图②,若∠CAB=60°,求BD、BC的长.
19.(8分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.
(1)求证:AB是☉O的切线;
(2)若∠A=60°,DF=,求☉O的直径BC的长.
20.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
(1)求证:直线AB是⊙O的切线;
(2)求证:△GOC∽△GEF;
(3)若AB=4BD,求sinA的值.
21.(8分)如图,在平面直角坐标系中,一次函数y=﹣x+2的图象交x轴于点P,二次函数y=﹣x2+x+m的图象与x轴的交点为(x1,0)、(x2,0),且+=17
(1)求二次函数的解析式和该二次函数图象的顶点的坐标.
(2)若二次函数y=﹣x2+x+m的图象与一次函数y=﹣x+2的图象交于A、B两点(点A在点B的左侧),在x轴上是否存在点M,使得△MAB是以∠ABM为直角的直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
22.(10分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.求证:DE=AB;以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求的长.
23.(12分)如图,反比例y=的图象与一次函数y=kx﹣3的图象在第一象限内交于A(4,a).
(1)求一次函数的解析式;
(2)若直线x=n(0<n<4)与反比例函数和一次函数的图象分别交于点B,C,连接AB,若△ABC是等腰直角三角形,求n的值.
24.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.求证:△AFE≌△CDF;若AB=4,BC=8,求图中阴影部分的面积.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.
【详解】
【点睛】
本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.
2、B
【解析】
根据图象知,两个函数的图象的交点是(1,1),(-1,-1).由图象可以直接写出当y1
根据图象知,一次函数y1=x3与反比例函数y2=的交点是(1,1),(-1,−1),
∴当y1
【点睛】
本题考查了反比例函数与幂函数,解题的关键是熟练的掌握反比例函数与幂函数的图象根据图象找出答案.
3、C
【解析】
根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
【详解】
解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
C、极差为9﹣4=5(吨),错误,故选项正确;
D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
故选:C.
【点睛】
此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.
4、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
5、D
【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
【详解】
解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
B.(a3)2=a3×2=a6≠a5,故该选项错误;
C.(ab2)3=a3b6≠ab6,故该选项错误;
D.a+2a=(1+2)a=3a,故该选项正确;
故选D.
考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
6、D
【解析】
根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
【详解】
连接OB,
∵点B是弧的中点,
∴∠AOB= ∠AOC=60°,
由圆周角定理得,∠D= ∠AOB=30°,
故选D.
【点睛】
此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
7、A
【解析】
根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.
【详解】
设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
根据题意列方程为:.
故选:.
【点睛】
本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
8、C
【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
【详解】
设I的边长为x
根据题意有
解得或(舍去)
故选:C.
【点睛】
本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
9、C
【解析】
设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.
故选C.
10、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≠1
【解析】
解:∵有意义,
∴x-1≠0,
∴x≠1;
故答案是:x≠1.
12、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
13、40
【解析】
首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
【详解】
解:在Rt△PAB中,∵∠APB=30°,
∴PB=2AB,
由题意BC=2AB,
∴PB=BC,
∴∠C=∠CPB,
∵∠ABP=∠C+∠CPB=60°,
∴∠C=30°,
∴PC=2PA,
∵PA=AB•tan60°,
∴PC=2×20×=40(km),
故答案为40.
【点睛】
本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
14、20
【解析】
由正n边形的中心角为18°,可得方程18n=360,解方程即可求得答案.
【详解】
∵正n边形的中心角为18°,
∴18n=360,
∴n=20.
故答案为20.
【点睛】
本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.
15、60.
【解析】
首先设半圆的圆心为O,连接OE,OA,由题意易得AC是线段OB的垂直平分线,即可求得∠AOC=∠ABC=60°,又由AE是切线,易证得Rt△AOE≌Rt△AOC,继而求得∠AOE的度数,则可求得答案.
【详解】
设半圆的圆心为O,连接OE,OA,
∵CD=2OC=2BC,
∴OC=BC,
∵∠ACB=90°,即AC⊥OB,
∴OA=BA,
∴∠AOC=∠ABC,
∵∠BAC=30°,
∴∠AOC=∠ABC=60°,
∵AE是切线,
∴∠AEO=90°,
∴∠AEO=∠ACO=90°,
∵在Rt△AOE和Rt△AOC中,
,
∴Rt△AOE≌Rt△AOC(HL),
∴∠AOE=∠AOC=60°,
∴∠EOD=180°﹣∠AOE﹣∠AOC=60°,
∴点E所对应的量角器上的刻度数是60°,
故答案为:60.
【点睛】
本题考查了切线的性质、全等三角形的判定与性质以及垂直平分线的性质,解题的关键是掌握辅助线的作法,注意掌握数形结合思想的应用.
16、.
【解析】
根据合数定义,用合数的个数除以数的总数即为所求的概率.
【详解】
∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.
故答案为:.
【点睛】
本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.
三、解答题(共8题,共72分)
17、详见解析.
【解析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=DC,
∵E、F分别是AB、BC边的中点,
∴AE=ED=CF=DF.
又∠D=∠D,
∴△ADF≌△CDE(SAS).
∴∠DAF=∠DCE,∠AFD=∠CED.
∴∠AEG=∠CFG.
在△AEG和△CFG中
,
∴△AEG≌△CFG(ASA).
∴AG=CG.
【点睛】
本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.
18、(1)BD=CD=5;(2)BD=5,BC=5.
【解析】
(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;
(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.
【详解】
(1)∵BC是⊙O的直径,
∴∠CAB=∠BDC=90°.
∵AD平分∠CAB,
∴,
∴CD=BD.
在直角△BDC中,BC=10,CD2+BD2=BC2,
∴BD=CD=5,
(2)如图②,连接OB,OD,OC,
∵AD平分∠CAB,且∠CAB=60°,
∴∠DAB=∠CAB=30°,
∴∠DOB=2∠DAB=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴BD=OB=OD.
∵⊙O的直径为10,则OB=5,
∴BD=5,
∵AD平分∠CAB,
∴,
∴OD⊥BC,设垂足为E,
∴BE=EC=OB•sin60°=,
∴BC=5.
【点睛】
本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.
19、(1)证明过程见解析;(2)
【解析】
(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.
【详解】
(1)∵CB=CD
∴∠CBD=∠CDB
又∵∠CEB=90°
∴∠CBD+∠BCE=∠CDE+∠DCE
∴∠BCE=∠DCE且∠BCD=2∠ABD
∴∠ABD=∠BCE
∴∠CBD+∠ABD=∠CBD+∠BCE=90°
∴CB⊥AB垂足为B
又∵CB为直径
∴AB是⊙O的切线.
(2)∵∠A=60°,DF=
∴在Rt△AFD中得出AF=1
在Rt△BFD中得出DF=3
∵∠ADF=∠ACB ∠A=∠A
∴△ADF∽△ACB
∴
即
解得:CB=
考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定
20、 (1)见解析;(2)见解析;(3).
【解析】
(1)利用等腰三角形的性质,证明OC⊥AB即可;
(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
(3)根据勾股定理和三角函数解答即可.
【详解】
证明:(1)∵OA=OB,AC=BC,
∴OC⊥AB,
∴⊙O是AB的切线.
(2)∵OA=OB,AC=BC,
∴∠AOC=∠BOC,
∵OE=OF,
∴∠OFE=∠OEF,
∵∠AOB=∠OFE+∠OEF,
∴∠AOC=∠OEF,
∴OC∥EF,
∴△GOC∽△GEF,
∴,
∵OD=OC,
∴OD•EG=OG•EF.
(3)∵AB=4BD,
∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
在Rt△BOC中,∵OB2=OC2+BC2,
即(r+m)2=r2+(2m)2,
解得:r=1.5m,OB=2.5m,
∴sinA=sinB=.
【点睛】
考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
21、(1)y=﹣x2+x+2=(x﹣)2+,顶点坐标为(,);(2)存在,点M(,0).理由见解析.
【解析】
(1)由根与系数的关系,结合已知条件可得9+4m=17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数y=﹣x+2联立并解得x=0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BM⊥AB交x轴于点M,证得△APO∽△MPB,根据相似三角形的性质可得 ,代入数据即可求得MP=,再求得OM=,即可得点M的坐标为(,0).
【详解】
(1)由题意得:x1+x2=3,x1x2=﹣2m,
x12+x22=(x1+x2)2﹣2x1x2=17,即:9+4m=17,
解得:m=2,
抛物线的表达式为:y=﹣x2+x+2=(x﹣)2+,
顶点坐标为(,);
(2)存在,理由:
将抛物线表达式和一次函数y=﹣x+2联立并解得:x=0或,
∴点A、B的坐标为(0,2)、(,),
一次函数y=﹣x+2与x轴的交点P的坐标为(6,0),
∵点P的坐标为(6,0),B的坐标为(,),点B的坐标为(0,2)、
∴PB==,
AP==2
过点B作BM⊥AB交x轴于点M,
∵∠MBP=∠AOP=90°,∠MPB=∠APO,
∴△APO∽△MPB,
∴ ,∴ ,
∴MP=,
∴OM=OP﹣MP=6﹣=,
∴点M(,0).
【点睛】
本题是一道二次函数的综合题,一元二次方程根与系数的关系、直线与抛物线的较大坐标.相似三角形的判定与性质,题目较为综合,有一定的难度,解决第二问的关键是求得PB、AP的长,再利用相似三角形的性质解决问题.
22、(1)详见解析;(2).
【解析】
∵四边形ABCD是矩形,
∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,
∴∠EAD=∠AFB,
∵DE⊥AF,
∴∠AED=90°,
在△ADE和△FAB中,
∴△ADE≌△FAB(AAS),
∴AE=BF=1
∵BF=FC=1
∴BC=AD=2
故在Rt△ADE中,∠ADE=30°,DE=,
∴的长==.
23、(1)y=x﹣3(2)1
【解析】
(1)由已知先求出a,得出点A的坐标,再把A的坐标代入一次函数y=kx-3求出k的值即可求出一次函数的解析式;
(2)易求点B、C的坐标分别为(n,),(n,n-3).设直线y=x-3与x轴、y轴分别交于点D、E,易得OD=OE=3,那么∠OED=45°.根据平行线的性质得到∠BCA=∠OED=45°,所以当△ABC是等腰直角三角形时只有AB=AC一种情况.过点A作AF⊥BC于F,根据等腰三角形三线合一的性质得出BF=FC,依此得出方程-1=1-(n-3),解方程即可.
【详解】
解:(1)∵反比例y=的图象过点A(4,a),
∴a==1,
∴A(4,1),
把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,
∴k=1,
∴一次函数的解析式为y=x﹣3;
(2)由题意可知,点B、C的坐标分别为(n,),(n,n﹣3).
设直线y=x﹣3与x轴、y轴分别交于点D、E,如图,
当x=0时,y=﹣3;当y=0时,x=3,
∴OD=OE,
∴∠OED=45°.
∵直线x=n平行于y轴,
∴∠BCA=∠OED=45°,
∵△ABC是等腰直角三角形,且0<n<4,
∴只有AB=AC一种情况,
过点A作AF⊥BC于F,则BF=FC,F(n,1),
∴﹣1=1﹣(n﹣3),
解得n1=1,n2=4,
∵0<n<4,
∴n2=4舍去,
∴n的值是1.
【点睛】
本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,等腰直角三角形的性质,难度适中.
24、(1)证明见解析;(2)1.
【解析】
试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
2023-2024学年河南省柘城县张桥乡联合中学九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年河南省柘城县张桥乡联合中学九上数学期末达标检测模拟试题含答案,共8页。试卷主要包含了下列说法正确的是,在中,,,则的值是等内容,欢迎下载使用。
河南省柘城县张桥乡联合中学2023-2024学年八上数学期末统考模拟试题含答案: 这是一份河南省柘城县张桥乡联合中学2023-2024学年八上数学期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁, 如图,直线l,下列各式是完全平方式的是,8的立方根为等内容,欢迎下载使用。
河南省柘城县张桥乡联合中学2022-2023学年数学七下期末检测模拟试题含答案: 这是一份河南省柘城县张桥乡联合中学2022-2023学年数学七下期末检测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。