湖南省澧县市级名校2021-2022学年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
2.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最大值为﹣5,则h的值为( )
A.3﹣或1+ B.3﹣或3+
C.3+或1﹣ D.1﹣或1+
3.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是( )
A.线段PB B.线段BC C.线段CQ D.线段AQ
4.下列计算正确的是( )
A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p
5.一个几何体的三视图如图所示,这个几何体是( )
A.棱柱 B.正方形 C.圆柱 D.圆锥
6.下面说法正确的个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;
②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;
③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;
④如果∠A=∠B=∠C,那么△ABC是直角三角形;
⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;
⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.
A.3个 B.4个 C.5个 D.6个
7.计算6m3÷(-3m2)的结果是( )
A.-3m B.-2m C.2m D.3m
8.点A(-1,),B(-2,)在反比例函数的图象上,则,的大小关系是( )
A.> B.= C.< D.不能确定
9.如图所示的正方体的展开图是( )
A. B. C. D.
10.下列运算正确的是( )
A.(a2)5=a7 B.(x﹣1)2=x2﹣1
C.3a2b﹣3ab2=3 D.a2•a4=a6
11.某商品价格为元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( )
A.0.96元 B.0.972元 C.1.08元 D.元
12.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.尺规作图:过直线外一点作已知直线的平行线.
已知:如图,直线l与直线l外一点P.
求作:过点P与直线l平行的直线.
作法如下:
(1)在直线l上任取两点A、B,连接AP、BP;
(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;
(3)过点P、M作直线;
(4)直线PM即为所求.
请回答:PM平行于l的依据是_____.
14.2018年1月4日在萍乡市第十五届人民代表大会第三次会议报告指出,去年我市城镇居民人均可支配收入33080元,33080用科学记数法可表示为__.
15.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.
16.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两
点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”
所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四
边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
17.如图,AB=AC,AD∥BC,若∠BAC=80°,则∠DAC=__________.
18.的相反数是______,的倒数是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.
20.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.
21.(6分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.
22.(8分)如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.求证:CE=AD;当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;若D为AB中点,则当=______时,四边形BECD是正方形.
23.(8分)先化简,后求值:(1﹣)÷(),其中a=1.
24.(10分)某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:直接写出、与的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?甲、乙两班相距4千米时所用时间是多少小时?
25.(10分)全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:
A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.
以下是根据调查结果绘制的统计图表的一部分,
运动形式
A
B
C
D
E
人数
请你根据以上信息,回答下列问题:
接受问卷调查的共有 人,图表中的 , .
统计图中,类所对应的扇形的圆心角的度数是 度.
揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.
26.(12分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.求证:AP=BQ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.
27.(12分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;
(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;
(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
2、C
【解析】
∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,
∴①若h<1≤x≤3,x=1时,y取得最大值-5,
可得:-(1-h)2+1=-5,
解得:h=1-或h=1+(舍);
②若1≤x≤3<h,当x=3时,y取得最大值-5,
可得:-(3-h)2+1=-5,
解得:h=3+或h=3-(舍).
综上,h的值为1-或3+,
故选C.
点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.
3、C
【解析】
根据三角形高线的定义即可解题.
【详解】
解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,
故选C.
【点睛】
本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.
4、D
【解析】
直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案.
【详解】
解:A.﹣5x﹣2x=﹣7x,故此选项错误;
B.(a+3)2=a2+6a+9,故此选项错误;
C.(﹣a3)2=a6,故此选项错误;
D.a2p÷a﹣p=a3p,正确.
故选D.
【点睛】
本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键.
5、C
【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体,
根据俯视图是圆可判断出该几何体为圆柱.
故选C.
6、C
【解析】
试题分析:①∵三角形三个内角的比是1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°,
∴3x=3×30°=90°,
∴此三角形是直角三角形,故本小题正确;
②∵三角形的一个外角与它相邻的一个内角的和是180°,
∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;
③∵直角三角形的三条高的交点恰好是三角形的一个顶点,
∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;
④∵∠A=∠B=∠C,
∴设∠A=∠B=x,则∠C=2x,
∴x+x+2x=180°,解得x=45°,
∴2x=2×45°=90°,
∴此三角形是直角三角形,故本小题正确;
⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,
∴三角形一个内角也等于另外两个内角的和,
∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;
⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,
由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,
∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.
故选D.
考点:1.三角形内角和定理;2.三角形的外角性质.
7、B
【解析】
根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.
【详解】
6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.
故选B.
8、C
【解析】
试题分析:对于反比例函数y=,当k>0时,在每一个象限内,y随x的增大而减小,根据题意可得:-1>-2,则.
考点:反比例函数的性质.
9、A
【解析】
有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
【详解】
把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
故选A
【点睛】
本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
10、D
【解析】
根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.
【详解】
A、(a2)5=a10,故原题计算错误;
B、(x﹣1)2=x2﹣2x+1,故原题计算错误;
C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;
D、a2•a4=a6,故原题计算正确;
故选:D.
【点睛】
此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.
11、B
【解析】
提价后这种商品的价格=原价×(1-降低的百分比)(1-百分比)×(1+增长的百分比),把相关数值代入求值即可.
【详解】
第一次降价后的价格为a×(1-10%)=0.9a元,
第二次降价后的价格为0.9a×(1-10%)=0.81a元,
∴提价20%的价格为0.81a×(1+20%)=0.972a元,
故选B.
【点睛】
本题考查函数模型的选择与应用,考查列代数式,得到第二次降价后的价格是解决本题的突破点;得到提价后这种商品的价格的等量关系是解决本题的关键.
12、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【解析】
利用画法得到PM=AB,BM=PA,则利用平行四边形的判定方法判断四边形ABMP为平行四边形,然后根据2平行四边形的性质得到PM∥AB.
【详解】
解:由作法得PM=AB,BM=PA,
∴四边形ABMP为平行四边形,
∴PM∥AB.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.
【点睛】
本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.
14、3.308×1.
【解析】
正确用科学计数法表示即可.
【详解】
解:33080=3.308×1
【点睛】
科学记数法的表示形式为的形式, 其中1<|a|<10,n为整数.确定n的值时, 要看把原数变成a时, 小数点移动了多少位, n的绝对值与小数点移动的位数相同. 当原数绝对值大于10时, n是正数; 当原数的绝对值小于1时,n是负数.
15、3.05×105
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
故答案为:.
【点睛】
本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.
16、A
【解析】
试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;
②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;
③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.
故选A.
考点:1.反比例函数综合题;2.动点问题的函数图象.
17、50°
【解析】
根据等腰三角形顶角度数,可求出每个底角,然后根据两直线平行,内错角相等解答.
【详解】
解:∵AB=AC,∠BAC=80°,
∴∠B=∠C=(180°﹣80°)÷2=50°;
∵AD∥BC,
∴∠DAC=∠C=50°,
故答案为50°.
【点睛】
本题考查了等腰三角形的性质以及平行线性质的应用,注意:两直线平行,内错角相等.
18、2,
【解析】
试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
﹣2的倒数是.
考点:倒数;相反数.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)相切;(2).
【解析】
试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.
试题解析:(1)MN是⊙O切线.
理由:连接OC.
∵OA=OC,
∴∠OAC=∠OCA,
∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,
∴∠BCM=∠BOC,
∵∠B=90°,
∴∠BOC+∠BCO=90°,
∴∠BCM+∠BCO=90°,
∴OC⊥MN,
∴MN是⊙O切线.
(2)由(1)可知∠BOC=∠BCM=60°,
∴∠AOC=120°,
在RT△BCO中,OC=OA=4,∠BCO=30°,
∴BO=OC=2,BC=2
∴S阴=S扇形OAC﹣S△OAC=.
考点:直线与圆的位置关系;扇形面积的计算.
20、﹣2
【解析】
【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.
【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1
=x1+2xy+2y1﹣2y1+x1﹣1x1
=2xy,
当x=+1,y=﹣1时,
原式=2×(+1)×(﹣1)
=2×(3﹣2)
=﹣2.
【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.
21、见解析
【解析】
由菱形的性质可得,,然后根据角角边判定,进而得到.
【详解】
证明:∵菱形ABCD,
∴,,
∵,,
∴,
在与中,
,
∴,
∴.
【点睛】
本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.
22、(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】
(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;
(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;
(3)求出∠CDB=90°,再根据正方形的判定推出即可.
【详解】
(1)∵DE⊥BC,
∴∠DFP=90°,
∵∠ACB=90°,
∴∠DFB=∠ACB,
∴DE//AC,
∵MN//AB,
∴四边形ADEC为平行四边形,
∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
【点睛】
本题考查了平行四边形的判定与性质,菱形的判定、正方形的判定,直角三角形斜边中线的性质等,综合性较强,熟练掌握和灵活运用相关知识是解题的关键.
23、,2.
【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.
【详解】
解:原式=
,
当a=1时,
原式==2.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
24、(1)y1=4x,y2=-5x+1.(2)km.(3)h.
【解析】
(1)由图象直接写出函数关系式;
(2)若相遇,甲乙走的总路程之和等于两地的距离.
【详解】
(1)根据图可以得到甲2.5小时,走1千米,则每小时走4千米,则函数关系是:y1=4x,
乙班从B地出发匀速步行到A地,2小时走了1千米,则每小时走5千米,则函数关系式是:y2=−5x+1.
(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,
设甲、乙两班学生出发后,x小时相遇,则
4x+5x=1,
解得x=.
当x=时,y2=−5×+1=,
∴相遇时乙班离A地为km.
(3)甲、乙两班首次相距4千米,
即两班走的路程之和为6km,
故4x+5x=6,
解得x=h.
∴甲、乙两班首次相距4千米时所用时间是h.
25、(1)150、45、36;(2)28.8°;(3)450人
【解析】
(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D项目人数除以总人数可得n的值;
(2)360°乘以A项目人数占总人数的比例可得;
(3)利用总人数乘以样本中C人数所占比例可得.
【详解】
解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,
∴n=36,
故答案为:150、45、36;
(2)A类所对应的扇形圆心角的度数为
故答案为:28.8°;
(3)(人)
答:估计该社区参加碧沙岗“暴走团”的大约有450人
【点睛】
本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.
26、(1)证明见解析;(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
【解析】
试题分析:(1)利用AAS证明△AQB≌△DPA,可得AP=BQ;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等可写出4对线段.
试题解析:(1)在正方形中ABCD中,AD=BA,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP⊥AQ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP,∵AQ⊥BE于点Q,DP⊥AQ于点P,∴∠AQB=∠DPA=90°,∴△AQB≌△DPA(AAS),
∴AP=BQ.(2)①AQ﹣AP=PQ,②AQ﹣BQ=PQ,③DP﹣AP=PQ,④DP﹣BQ=PQ.
考点:(1)正方形;(2)全等三角形的判定与性质.
27、(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).
【解析】
(1)分别作出点B个点C旋转后的点,然后顺次连接可以得到;
(2)根据点B的坐标画出平面直角坐标系;
(3)分别作出点A、点B、点C关于原点对称的点,然后顺次连接可以得到.
【详解】
(1)△A如图所示;
(2)如图所示,A(0,1),C(﹣3,1);
(3)△如图所示,(3,﹣5),(3,﹣1).
湖南省澧县市级名校2022年中考数学押题试卷含解析: 这是一份湖南省澧县市级名校2022年中考数学押题试卷含解析,共21页。试卷主要包含了方程,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。
2022届湖南省张家市市级名校中考联考数学试卷含解析: 这是一份2022届湖南省张家市市级名校中考联考数学试卷含解析,共18页。试卷主要包含了化简•a5所得的结果是,若正比例函数y=mx等内容,欢迎下载使用。
2021-2022学年湖南省澧县联考中考试题猜想数学试卷含解析: 这是一份2021-2022学年湖南省澧县联考中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,tan30°的值为,下列运算正确的是等内容,欢迎下载使用。