![湖南省长沙市雅礼集团达标名校2021-2022学年中考试题猜想数学试卷含解析第1页](http://img-preview.51jiaoxi.com/2/3/13128027/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市雅礼集团达标名校2021-2022学年中考试题猜想数学试卷含解析第2页](http://img-preview.51jiaoxi.com/2/3/13128027/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖南省长沙市雅礼集团达标名校2021-2022学年中考试题猜想数学试卷含解析第3页](http://img-preview.51jiaoxi.com/2/3/13128027/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖南省长沙市雅礼集团达标名校2021-2022学年中考试题猜想数学试卷含解析
展开
这是一份湖南省长沙市雅礼集团达标名校2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,已知,则的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知二次函数y=ax2+bx的图象与正比例函数y=kx的图象相交于点A(1,2),有下面四个结论:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正确的是( )
A.①② B.②③ C.①④ D.③④
2.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
3.下列说法中正确的是( )
A.检测一批灯泡的使用寿命适宜用普查.
B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.
C.“367人中有两人是同月同日生”为必然事件.
D.“多边形内角和与外角和相等”是不可能事件.
4.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )
A.44 B.45 C.46 D.47
5.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积( )
A.11 B.10 C.9 D.16
6.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
7.已知,则的值为
A. B. C. D.
8.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是( )
A. B. C. D.
9.3点40分,时钟的时针与分针的夹角为( )
A.140° B.130° C.120° D.110°
10.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是
A.3 B. C. D.4
11.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )
A.①② B.②③ C.②④ D.①③④
12.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30° B.35° C.40° D.50°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
14.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
15.用换元法解方程,设y=,那么原方程化为关于y的整式方程是_____.
16.点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是_____.
17.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .
18.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
20.(6分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.
(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.
21.(6分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
22.(8分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=,求点P的坐标.
23.(8分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.
(1)实践操作:尺规作图,不写作法,保留作图痕迹.
①作∠ABC的角平分线交AC于点D.
②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.
(2)推理计算:四边形BFDE的面积为 .
24.(10分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC长为4米,求新传送带AC的长及新、原传送带触地点之间AB的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.414
25.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
26.(12分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:
(1)这两种书的单价.
(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?
27.(12分)A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据抛物线图象性质确定a、b符号,把点A代入y=ax2+bx得到a与b数量关系,代入②,不等式kx≤ax2+bx的解集可以转化为函数图象的高低关系.
【详解】
解:根据图象抛物线开口向上,对称轴在y轴右侧,则a>0,b<0,则①错误
将A(1,2)代入y=ax2+bx,则2=9a+1b
∴b=,
∴a﹣b=a﹣()=4a﹣>-,故②正确;
由正弦定义sinα=,则③正确;
不等式kx≤ax2+bx从函数图象上可视为抛物线图象不低于直线y=kx的图象
则满足条件x范围为x≥1或x≤0,则④错误.
故答案为:B.
【点睛】
二次函数的图像,sinα公式,不等式的解集.
2、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
3、C
【解析】
【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.
【详解】
A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;
B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;
C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;
D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.
故正确选项为:C
【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.
4、A
【解析】
连接正方形的对角线,然后依据正方形的性质进行判断即可.
【详解】
解:如图所示:
∵四边形为正方形,
∴∠1=45°.
∵∠1<∠1.
∴∠1<45°.
故选:A.
【点睛】
本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.
5、B
【解析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
【详解】
如图,∵四边形ABCD是矩形,
∴AD=BC,∠D=∠B=90°,
根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
∴HC=BC,∠H=∠B,
又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
∴∠HCE=∠BCF,
在△EHC和△FBC中,
∵,
∴△EHC≌△FBC,
∴BF=HE,
∴BF=HE=DE,
设BF=EH=DE=x,
则AF=CF=9﹣x,
在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
解得:x=4,即DE=EH=BF=4,
则AG=DE=EH=BF=4,
∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
∴EF2=EG2+GF2=32+12=10,
故选B.
【点睛】
本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
6、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
【点睛】
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
7、C
【解析】
由题意得,4−x⩾0,x−4⩾0,
解得x=4,则y=3,则=,
故选:C.
8、C
【解析】
解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,
可列方程得,
故选C.
【点睛】
本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.
9、B
【解析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:3点40分时针与分针相距4+=份,
30°×=130,
故选B.
【点睛】
本题考查了钟面角,确定时针与分针相距的份数是解题关键.
10、B
【解析】
试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.
连接AC,
∵∠AOC=∠ADC=90°,AC=AC,OC=CD,
∴Rt△AOC≌Rt△ADC,
∴AD=AO=2,
连接CD,设EF=x,
∴DE2=EF•OE,
∵CF=1,
∴DE=,
∴△CDE∽△AOE,
∴=,
即=,
解得x=,
S△ABE===.
故选B.
考点:1.切线的性质;2.三角形的面积.
11、C
【解析】
试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.
点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.
12、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
14、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
15、6y2-5y+2=0
【解析】
根据y=,将方程变形即可.
【详解】
根据题意得:3y+,
得到6y2-5y+2=0
故答案为6y2-5y+2=0
【点睛】
此题考查了换元法解分式方程,利用了整体的思想,将方程进行适当的变形是解本题的关键.
16、y2<y3<y1
【解析】
把点的坐标分别代入抛物线解析式可分别求得y1、y2、y3的值,比较可求得答案.
【详解】
∵y=2x2-4x+c,
∴当x=-3时,y1=2×(-3)2-4×(-3)+c=30+c,
当x=2时,y2=2×22-4×2+c=c,
当x=3时,y3=2×32-4×3+c=6+c,
∵c<6+c<30+c,
∴y2<y3<y1,
故答案为y2<y3<y1.
【点睛】
本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.
17、
【解析】
试题分析:根据概率的意义,用符合条件的数量除以总数即可,即.
考点:概率
18、17℃.
【解析】
根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.
【详解】
解:返回舱的最高温度为:21+4=25℃;
返回舱的最低温度为:21-4=17℃;
故答案为:17℃.
【点睛】
本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
【解析】
分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
详解:(1)被随机抽取的学生共有14÷28%=50(人);
(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
如图所示:
(3)参与了4项或5项活动的学生共有×2000=720(人).
点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
20、(1)见解析;(2)AC=1.
【解析】
(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.
(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.
【详解】
(1)证明:连接OD;
∵PA为⊙O切线,
∴∠OAD=90°;
在△OAD和△OBD中,
,
∴△OAD≌△OBD,
∴∠OBD=∠OAD=90°,
∴OB⊥BD
∴DB为⊙O的切线
(2)解:在Rt△OAP中;
∵PB=OB=OA,
∴OP=2OA,
∴∠OPA=10°,
∴∠POA=60°=2∠C,
∴PD=2BD=2DA=2,
∴∠OPA=∠C=10°,
∴AC=AP=1.
【点睛】
本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.
21、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【解析】
(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)根据图象信息:货车的速度V货=,
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300﹣270=30(千米).
所以轿车到达乙地后,货车距乙地30千米.
故答案为30;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
,解得,
∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
易得OA:y=60x,
,解得,
∴当x=3.9时,轿车与货车相遇;
(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
解得x=3.5或4.3小时.
答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【点睛】
本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
22、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
(1)根据函数图像判断即可;
(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
【详解】
(1)∵点A(m,3),B(-6,n)在双曲线y=上,
∴m=1,n=-1,
∴A(1,3),B(-6,-1).
将(1,3),B(-6,-1)带入y=kx+b,
得:,解得,.
∴直线的解析式为y=x+1.
(1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
(3)当y=x+1=0时,x=-4,
∴点C(-4,0).
设点P的坐标为(x,0),如图,
∵S△ACP=S△BOC,A(1,3),B(-6,-1),
∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
解得:x1=-6,x1=-1.
∴点P的坐标为(-6,0)或(-1,0).
【点睛】
本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
23、 (1)详见解析;(2).
【解析】
(1)利用基本作图(作一个角等于已知角和作已知线段的垂直平分线)作出BD和EF;
(2)先证明四边形BEDF为菱形,再利用含30度的直角三角形三边的关系求出BF和CD,然后利用菱形的面积公式求解.
【详解】
(1)如图,DE、DF为所作;
(2)∵∠C=90°,∠A=30°,∴∠ABC=10°,AB=2BC=2.
∵BD为∠ABC的角平分线,∴∠DBC=∠EBD=30°.
∵EF垂直平分BD,∴FB=FD,EB=ED,∴∠FDB=∠DBC=30°,∠EDB=∠EBD=30°,∴DE∥BF,BE∥DF,∴四边形BEDF为平行四边形,而FB=FD,∴四边形BEDF为菱形.
∵∠DFC=∠FBD+∠FDB=30°+30°=10°,∴∠FDC=90°-10°=30°.在Rt△BDC中,∵BC=1,∠DBC=30°,∴DC=.在Rt△FCD中,∵∠FDC=30°,∴FC=2,∴FD=2FC=4,∴BF=FD=4,∴四边形BFDE的面积=4×2=8.
故答案为:8.
【点睛】
本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).
24、新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【解析】
根据题意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的长,再表示出AD的长,进而求出AB的长.
【详解】
解:如图,作CD⊥AB于点D,由题意可得:∠A=36°,∠CBD=15°,BC=1.
在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.
∵∠CBD=15°,∴BD=CD=2.
在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.
答:新传送带AC的长为1.8m,新、原传送带触地点之间AB的长约为1.2m.
【点睛】
本题考查了坡度坡角问题,正确构建直角三角形再求出BD的长是解题的关键.
25、2.1.
【解析】
据题意得出tanB = , 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长.
【详解】
解:
据题意得tanB=,
∵MN∥AD,
∴∠A=∠B,
∴tanA=,
∵DE⊥AD,
∴在Rt△ADE中,tanA=,
∵AD=9,
∴DE=1,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
在Rt△CEF中,CE2=EF2+CF2
设EF=x,CF=1x(x>0),CE=2.5,
代入得()2=x2+(1x)2
解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),
∴CF=1x=≈2.1,
∴该停车库限高2.1米.
【点睛】
点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值.
26、(1)文学书的单价为10元,则科普书的单价为15元;(2)27本
【解析】
(1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.
(2)根据题意列出不等式解答即可.
【详解】
(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:
=4,
解得:x=10,
经检验:x=10是原方程的解,
∴1.5x=15,
答:文学书的单价为10元,则科普书的单价为15元.
(2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,
解得:m≤27.2,
∴最多买科普书27本.
【点睛】
此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.
27、(1);(2) .
【解析】
试题分析:(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.
试题解析:
解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;
(2)树状图如下,
由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A手中的结果有A→B→C→A,A→C→B→A这两种,所以三次传球后,球恰在A手中的概率是.
考点:用列举法求概率.
相关试卷
这是一份2024年湖南省长沙市雅礼集团中考数学预测卷(一)(含答案),共23页。
这是一份2024年湖南省长沙市雅礼集团中考数学预测卷(一),文件包含2024年湖南省长沙市雅礼集团中考数学预测卷一解答版pdf、2024年湖南省长沙市雅礼集团中考数学预测卷一考试版pdf等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份湖南省长沙市雅礼集团2022年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了下列计算中正确的是等内容,欢迎下载使用。