广东省湛江市雷州市2021-2022学年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是( )
A.3 B.3.5 C.4 D.5
2.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为( )
A. B. C. D.
3.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )
A.M B.N C.P D.Q
4.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
5.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )
A.a>0 B.a=0 C.c>0 D.c=0
6.已知等边三角形的内切圆半径,外接圆半径和高的比是( )
A.1:2: B.2:3:4 C.1::2 D.1:2:3
7.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是
A. B. C. D.
8.如图,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足为D、E,F分别是CD,AD上的点,且CE=AF.如果∠AED=62°,那么∠DBF的度数为( )
A.62° B.38° C.28° D.26°
9.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是( )
A.9 B.11 C.13 D.11或13
10.实数﹣5.22的绝对值是( )
A.5.22 B.﹣5.22 C.±5.22 D.
二、填空题(共7小题,每小题3分,满分21分)
11.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n),已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(﹣1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).
12.因式分解:-3x2+3x=________.
13.新田为实现全县“脱贫摘帽”,2018年2月已统筹整合涉农资金235000000元,撬动800000000元金融资本参与全县脱贫攻坚工作,请将235000000用科学记数法表示为___.
14.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.
15.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.
16.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.
17.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.
三、解答题(共7小题,满分69分)
18.(10分)观察下列算式:
① 1 × 3 - 22 =" 3" - 4 = -1
② 2 × 4 - 32 =" 8" - 9 = -1
③3 × 5 - 42 =" 15" - 16 = -1
④
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
19.(5分)如图,已知某水库大坝的横断面是梯形ABCD,坝顶宽AD是6米,坝高14米,背水坡AB的坡度为1:3,迎水坡CD的坡度为1:1.
求:(1)背水坡AB的长度.
(1)坝底BC的长度.
20.(8分)已知PA与⊙O相切于点A,B、C是⊙O上的两点
(1)如图①,PB与⊙O相切于点B,AC是⊙O的直径若∠BAC=25°;求∠P的大小
(2)如图②,PB与⊙O相交于点D,且PD=DB,若∠ACB=90°,求∠P的大小
21.(10分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.
(1)设该学校需要印刷艺术节的宣传资料x份,支付甲印刷厂的费用为y元,写出y关于x的函数关系式,并写出它的定义域;
(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?
22.(10分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相交于点E,与AB相交于点F.
(1)求证:四边形是平行四边形;
(2)如果,求证四边形是矩形.
23.(12分)现有A、B两种手机上网计费方式,收费标准如下表所示:
计费方式
月使用费/元
包月上网时间/分
超时费/(元/分)
A
30
120
0.20
B
60
320
0.25
设上网时间为x分钟,
(1)若按方式A和方式B的收费金额相等,求x的值;
(2)若上网时间x超过320分钟,选择哪一种方式更省钱?
24.(14分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;如果△ABC是等边三角形,试求这个一元二次方程的根.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
【详解】
解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
AP≥AB,
AP≥3.5,
故选:A.
【点睛】
本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
2、D
【解析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.
点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.
3、A
【解析】
解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.
点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.
4、C
【解析】
分析:求出扇形的圆心角以及半径即可解决问题;
详解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE=.
故选C.
点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.
5、D
【解析】
试题分析:根据题意得a≠1且△=,解得且a≠1.观察四个答案,只有c=1一定满足条件,故选D.
考点:根的判别式;一元二次方程的定义.
6、D
【解析】
试题分析:图中内切圆半径是OD,外接圆的半径是OC,高是AD,因而AD=OC+OD;
在直角△OCD中,∠DOC=60°,则OD:OC=1:2,因而OD:OC:AD=1:2:1,
所以内切圆半径,外接圆半径和高的比是1:2:1.故选D.
考点:正多边形和圆.
7、C
【解析】
如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
【详解】
如图作,FN∥AD,交AB于N,交BE于M.
∵四边形ABCD是正方形,
∴AB∥CD,∵FN∥AD,
∴四边形ANFD是平行四边形,
∵∠D=90°,
∴四边形ANFD是矩形,
∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
∵AN=BN,MN∥AE,
∴BM=ME,
∴MN=a,
∴FM=a,
∵AE∥FM,
∴,
故选C.
【点睛】
本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
8、C
【解析】
分析:主要考查:等腰三角形的三线合一,直角三角形的性质.注意:根据斜边和直角边对应相等可以证明△BDF≌△ADE.
详解:∵AB=AC,AD⊥BC,∴BD=CD.
又∵∠BAC=90°,∴BD=AD=CD.
又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),
∴∠DBF=∠DAE=90°﹣62°=28°.
故选C.
点睛:熟练运用等腰直角三角形三线合一性质、直角三角形斜边上的中线等于斜边的一半是解答本题的关键.
9、C
【解析】
试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.
解方程x2-6x+8=0得x=2或x=4
当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形
当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13
故选C.
考点:解一元二次方程,三角形的三边关系
点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.
10、A
【解析】
根据绝对值的性质进行解答即可.
【详解】
实数﹣5.1的绝对值是5.1.
故选A.
【点睛】
本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、①③④
【解析】
分析:根据两个向量垂直的判定方法一一判断即可;
详解:①∵2×(−1)+1×2=0,
∴与垂直;
②∵
∴与不垂直.
③∵
∴与垂直.
④∵
∴与垂直.
故答案为:①③④.
点睛:考查平面向量,解题的关键是掌握向量垂直的定义.
12、-3x(x-1)
【解析】
原式提取公因式即可得到结果.
【详解】
解:原式=-3x(x-1),
故答案为-3x(x-1)
【点睛】
此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.
13、2.35×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将235000000用科学记数法表示为:2.35×1.
故答案为:2.35×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14、 .
【解析】
延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.
【详解】
解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.
∵AC=6,CF=1,
∴AF=AC-CF=4,
∵∠A=60°,∠AMF=90°,
∴∠AFM=30°,
∴AM=AF=1,
∴FM==1 ,
∵FP=FC=1,
∴PM=MF-PF=1-1,
∴点P到边AB距离的最小值是1-1.
故答案为: 1-1.
【点睛】
本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P的位置.
15、6.4
【解析】
根据平行投影,同一时刻物长与影长的比值固定即可解题.
【详解】
解:由题可知:,
解得:树高=6.4米.
【点睛】
本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.
16、10或1
【解析】
分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.
【详解】
如图,作半径于C,连接OB,
由垂径定理得:=AB=×60=30cm,
在中,,
当水位上升到圆心以下时 水面宽80cm时,
则,
水面上升的高度为:;
当水位上升到圆心以上时,水面上升的高度为:,
综上可得,水面上升的高度为30cm或1cm,
故答案为:10或1.
【点睛】
本题考查了垂径定理的应用,掌握垂径定理、灵活运用分类讨论的思想是解题的关键.
17、20.
【解析】
分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.
解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,
FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.
点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.
三、解答题(共7小题,满分69分)
18、⑴;
⑵答案不唯一.如;
⑶
.
【解析】
(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中,发现的规律,由特殊到一般,得出结论;
(3)一定成立.利用整式的混合运算方法加以证明.
19、(1)背水坡的长度为米;(1)坝底的长度为116米.
【解析】
(1)分别过点、作,垂足分别为点、,结合题意求得AM,MN,在中,得BM,再利用勾股定理即可.
(1)在中,求得CN即可得到BC.
【详解】
(1)分别过点、作,垂足分别为点、,
根据题意,可知(米),(米)
在中∵,∴(米),
∵,∴(米).
答:背水坡的长度为米.
(1)在中,,
∴(米),
∴(米)
答:坝底的长度为116米.
【点睛】
本题考查的知识点是解直角三角形的应用-坡度坡角问题,解题的关键是熟练的掌握解直角三角形的应用-坡度坡角问题.
20、(1)∠P=50°;(2)∠P=45°.
【解析】
(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;
(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.
【详解】
解:(1)如图①,连接OB.
∵PA、PB与⊙O相切于A、B点,
∴PA=PB,
∴∠PAO=∠PBO=90°
∴∠PAB=∠PBA,
∵∠BAC=25°,
∴∠PBA=∠PAB=90°一∠BAC=65°
∴∠P=180°-∠PAB-∠PBA=50°;
(2)如图②,连接AB、AD,
∵∠ACB=90°,
∴AB是的直径,∠ADB=90·
∵PD=DB,
∴PA=AB.
∵PA与⊙O相切于A点
∴AB⊥PA,
∴∠P=∠ABP=45°.
【点睛】
本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.
21、(1);(2)选择乙印刷厂比较优惠.
【解析】
(1)根据题意直接写出两厂印刷厂的收费y甲(元)关于印刷数量x(份)之间的函数关系式;
(2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.
【详解】
(1)根据题意可知:
甲印刷厂的收费y甲=0.3x×0.9+100=0.27x+100,y关于x的函数关系式是y甲=0.27x+100(x>0);
(2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).
∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.
【点睛】
本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.
22、(1)见解析;(2)见解析.
【解析】
(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;
(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.
【详解】
证明:(1)是的中点,
,
,
,
又,
,
,
又是的中线,
,
又,
四边形是平行四边形;
(2),
,
∴,即,
,
又,
,
又是的中线,
,
又四边形是平行四边形,
四边形是矩形.
【点睛】
本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相等的平行四边形是矩形.
23、(1)x=270或x=520;(2)当320
(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;根据方式A和方式B的收费金额相等,分类讨论,列出方程,求解即可.
(2)列不等式,求解即可得出结论.
【详解】
(1)当时,与x之间的函数关系式为:
当时,与x之间的函数关系式为:
即
当时,与x之间的函数关系式为:
当时, 与x之间的函数关系式为:
即
方式A和方式B的收费金额相等,
当时,
当时, 解得:
当时, 解得:
即x=270或x=520时,方式A和方式B的收费金额相等.
(2) 若上网时间x超过320分钟,
解得320
当x=520时,两种方式花钱一样多;
解得x>520,
当x>520时选择方式A更省钱.
【点睛】
考查一次函数的应用,列出函数关系式是解题的关键.注意分类讨论,不要漏解.
24、 (1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.
【解析】
试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状;
(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;
(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.
试题解析:(1)△ABC是等腰三角形;
理由:∵x=﹣1是方程的根,
∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,
∴a+c﹣2b+a﹣c=0,
∴a﹣b=0,
∴a=b,
∴△ABC是等腰三角形;
(2)∵方程有两个相等的实数根,
∴(2b)2﹣4(a+c)(a﹣c)=0,
∴4b2﹣4a2+4c2=0,
∴a2=b2+c2,
∴△ABC是直角三角形;
(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:
2ax2+2ax=0,
∴x2+x=0,
解得:x1=0,x2=﹣1.
考点:一元二次方程的应用.
2023年广东省湛江市雷州市三校联考中考数学一模试卷(含解析): 这是一份2023年广东省湛江市雷州市三校联考中考数学一模试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省湛江市雷州市2021-2022学年中考数学考前最后一卷含解析: 这是一份广东省湛江市雷州市2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2022年广东省湛江市雷州市中考四模数学试题含解析: 这是一份2022年广东省湛江市雷州市中考四模数学试题含解析,共22页。试卷主要包含了的相反数是等内容,欢迎下载使用。