


广西壮族自治区桂平市2021-2022学年中考数学模拟精编试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如果,那么代数式的值为( )
A.1 B.2 C.3 D.4
2.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是( )
A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=
3.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
4.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为( )
A.﹣=100 B.﹣=100
C.﹣=100 D.﹣=100
5.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
6.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()
A.米2 B.米2 C.米2 D.米2
7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
8.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
A.2:3 B.3:2 C.4:9 D.9:4
9.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( )
A.平均数是15 B.众数是10 C.中位数是17 D.方差是
10.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为( )
A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg
二、填空题(共7小题,每小题3分,满分21分)
11.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.
12.已知扇形的弧长为2,圆心角为60°,则它的半径为________.
13.一次函数与的图象如图,则的解集是__.
14.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是 .
15.如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
16.如图,矩形ABCD中,E为BC的中点,将△ABE沿直线AE折叠时点B落在点F处,连接FC,若∠DAF=18°,则∠DCF=_____度.
17.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.
三、解答题(共7小题,满分69分)
18.(10分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
(1)求此抛物线的解析式;
(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
19.(5分)先化简,再求值:,其中x满足x2-2x-2=0.
20.(8分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
21.(10分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
车型
起步公里数
起步价格
超出起步公里数后的单价
普通燃油型
3
13元
2.3元/公里
纯电动型
3
8元
2元/公里
张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
22.(10分)如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.求证:是的切线;若的半径为2,求图中阴影部分的面积.
23.(12分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的倾斜角∠BAH=30°,AB=20米,AB=30米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
24.(14分)下表给出A、B、C三种上宽带网的收费方式:
收费方式
月使用费/元
包时上网时间/h
超时费/(元/min)
A
30
25
0.05
B
50
50
0.05
C
120
不限时
设上网时间为t小时.
(I)根据题意,填写下表:
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
方式B
50
100
(II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;
(III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y代入即可得.
【详解】
解:∵原式=
=
=
∵3x-4y=0,
∴3x=4y
原式==1
故选:A.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
2、D
【解析】
【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.
【详解】根据题意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B选项错误;
∵x1+x2<0,x1x2<0,
∴x1、x2异号,且负数的绝对值大,故C选项错误;
∵x1为一元二次方程2x2+2x﹣1=0的根,
∴2x12+2x1﹣1=0,
∴x12+x1=,故D选项正确,
故选D.
【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.
3、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
4、B
【解析】
【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.
【详解】科普类图书平均每本的价格是x元,则可列方程为:
﹣=100,
故选B.
【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
5、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.不是轴对称图形,也不是中心对称图形.故错误;
B.不是轴对称图形,也不是中心对称图形.故错误;
C.是轴对称图形,也是中心对称图形.故正确;
D.不是轴对称图形,是中心对称图形.故错误.
故选C.
【点睛】
掌握好中心对称图形与轴对称图形的概念.
轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;
中心对称图形是要寻找对称中心,旋转180°后与原图重合.
6、C
【解析】
连接OD,
∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
∵∠AOB=90°,CD∥OB,∴CD⊥OA.
在Rt△OCD中,∵OD=6,OC=1,∴.
又∵,∴∠DOC=60°.
∴(米2).
故选C.
7、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
8、C
【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
9、C
【解析】
解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.
故选C.
【点睛】
本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.
10、D
【解析】
试题分析:科学计数法是指:a×,且,n为原数的整数位数减一.
二、填空题(共7小题,每小题3分,满分21分)
11、2:1
【解析】
先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.
故答案为2:1.
点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.
12、6.
【解析】
分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可.
详解: 设扇形的半径为r,
根据题意得:,
解得 :r=6
故答案为6.
点睛: 此题考查弧长公式,关键是根据弧长公式解答.
13、
【解析】
不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.
【详解】
解:不等式的解集是.
故答案为:.
【点睛】
本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
14、
【解析】
画树状图为:
共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,
所以点P(a,b)在平面直角坐标系中第二象限内的概率==.
故答案为.
15、-1
【解析】
先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=1,最后根据AB∥OE,得出,即BC•EO=AB•CO,求得ab的值即可.
【详解】
设D(a,b),则CO=-a,CD=AB=b,
∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,
∴k=ab,
∵△BCE的面积是6,
∴×BC×OE=6,即BC×OE=1,
∵AB∥OE,
∴,即BC•EO=AB•CO,
∴1=b×(-a),即ab=-1,
∴k=-1,
故答案为-1.
【点睛】
本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法.
16、1 .
【解析】
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,求出∠BAE=∠FAE=1°,由直角三角形的性质得出∠AEF=∠AEB=54°,求出∠CEF=72°,求出FE=CE,由等腰三角形的性质求出∠ECF=54°,即可得出∠DCF的度数.
【详解】
解:∵四边形ABCD是矩形,
∴∠BAD=∠B=∠BCD=90°,
由折叠的性质得:FE=BE,∠FAE=∠BAE,∠AEB=∠AEF,
∵∠DAF=18°,
∴∠BAE=∠FAE=×(90°﹣18°)=1°,
∴∠AEF=∠AEB=90°﹣1°=54°,
∴∠CEF=180°﹣2×54°=72°,
∵E为BC的中点,
∴BE=CE,
∴FE=CE,
∴∠ECF=×(180°﹣72°)=54°,
∴∠DCF=90°﹣∠ECF=1°.
故答案为1.
【点睛】
本题考查了矩形的性质、折叠变换的性质、直角三角形的性质、等腰三角形的性质、三角形内角和定理等知识点,求出∠ECF的度数是解题的关键.
17、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是.
故答案为.
【点睛】
本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题(共7小题,满分69分)
18、(1);(2)-2或-1;(3)-1≤n<1或1
(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;
(2)根据题意画出图形,分三种情况进行讨论;
(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.
【详解】
解:(1)依题意,得:
解得:
∴此抛物线的解析式 ;
(2)设直线AB的解析式为y=kx+b,依题意得:
解得:
∴直线AB的解析式为y=-x.
∵点P的横坐标为m,且在抛物线上,
∴点P的坐标为(m, )
∵轴,且点Q有线段AB上,
∴点Q的坐标为(m,-m)
① 当PQ=AP时,如图,∵∠APQ=90°,轴,
∴
解得,m=-2或m=1(舍去)
② 当AQ=AP时,如图,过点A作AC⊥PQ于C,
∵为等腰直角三角形,
∴2AC=PQ
即m=1(舍去)或m=-1.
综上所述,当为等腰直角三角形时,求的值是-2惑-1.;
(3)①如图,当n<1时,依题意可知C,D的横坐标相同,CE=2(1-n)
∴点E的坐标为(n,n-2)
当点E恰好在抛物线上时,解得,n=-1.
∴此时n的取值范围-1≤n<1.
②如图,当n>1时,依题可知点E的坐标为(2-n,-n)
当点E在抛物线上时,
解得,n=3或n=1.
∵n>1.
∴n=3.
∴此时n的取值范围1
【点睛】
本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.
19、
【解析】
分析:先根据分式的混合运算顺序和运算法则化简原式,再由x2-2x-2=0得x2=2x+2=2(x+1),整体代入计算可得.
详解:原式=
=
=,
∵x2-2x-2=0,
∴x2=2x+2=2(x+1),
则原式=.
点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
20、证明见解析.
【解析】
(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
【详解】
(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥EC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE;
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴BA=BE=ED= AD
∴四边形ABED为菱形.
考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
21、8.2 km
【解析】
首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.
【详解】
解:设小明家到单位的路程是x千米.
依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.
解得:x=8.2
答:小明家到单位的路程是8.2千米.
【点睛】
本题考查一元一次方程的应用,找准等量关系是解题关键.
22、(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
【详解】
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
23、 (1) BH为10米;(2) 宣传牌CD高约(40﹣20)米
【解析】
(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;
(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.
【详解】
(1)过B作BH⊥AE于H,
Rt△ABH中,∠BAH=30°,
∴BH=AB=×20=10(米),
即点B距水平面AE的高度BH为10米;
(2)过B作BG⊥DE于G,
∵BH⊥HE,GE⊥HE,BG⊥DE,
∴四边形BHEG是矩形.
∵由(1)得:BH=10,AH=10,
∴BG=AH+AE=(10+30)米,
Rt△BGC中,∠CBG=45°,
∴CG=BG=(10+30)米,
∴CE=CG+GE=CG+BH=10+30+10=10+40(米),
在Rt△AED中,
=tan∠DAE=tan60°=,
DE=AE=30
∴CD=CE﹣DE=10+40﹣30=40﹣20.
答:宣传牌CD高约(40﹣20)米.
【点睛】
本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.
24、(I)见解析;(II)见解析;(III)见解析.
【解析】
(I)根据两种方式的收费标准分别计算,填表即可;
(II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;
(III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.
【详解】
(I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,
当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,
填表如下:
月费/元
上网时间/h
超时费/(元)
总费用/(元)
方式A
30
40
45
75
方式B
50
100
150
200
(II)当0≤t≤25时,y1=30,
当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,
所以y1=;
当0≤t≤50时,y2=50,
当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,
所以y2=;
(III)当75<t<100时,选用C种计费方式省钱.理由如下:
当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,
当t=75时,y1=180,y2=125,y3=120,
所以当75<t<100时,选用C种计费方式省钱.
【点睛】
本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.
枣庄市2021-2022学年中考数学模拟精编试卷含解析: 这是一份枣庄市2021-2022学年中考数学模拟精编试卷含解析,共17页。试卷主要包含了7的相反数是等内容,欢迎下载使用。
2022年广西壮族自治区北海市中考数学模拟精编试卷含解析: 这是一份2022年广西壮族自治区北海市中考数学模拟精编试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,如果a﹣b=5,那么代数式,如图,空心圆柱体的左视图是,-sin60°的倒数为等内容,欢迎下载使用。
2021-2022学年重庆一中中考数学模拟精编试卷含解析: 这是一份2021-2022学年重庆一中中考数学模拟精编试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,如图所示,在平面直角坐标系中A等内容,欢迎下载使用。