搜索
    上传资料 赚现金
    英语朗读宝

    湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析

    湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析第1页
    湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析第2页
    湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析

    展开

    这是一份湖北武汉一初慧泉中学2022年中考数学全真模拟试卷含解析,共26页。试卷主要包含了考生要认真填写考场号和座位序号,若二元一次方程组的解为则的值为,尺规作图要求等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.估计的值在(  )
    A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
    2.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价20%,现售价为a元,则原售价为(  )
    A.(a﹣20%)元 B.(a+20%)元 C.a元 D. a元
    3.下列调查中,最适合采用全面调查(普查)方式的是( )
    A.对重庆市初中学生每天阅读时间的调查
    B.对端午节期间市场上粽子质量情况的调查
    C.对某批次手机的防水功能的调查
    D.对某校九年级3班学生肺活量情况的调查
    4.把不等式组的解集表示在数轴上,正确的是(  )
    A. B.
    C. D.
    5.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是(  )

    A.1 B.3 C.4 D.5
    6.如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是(  )

    A. B. C. D.
    7.若二元一次方程组的解为则的值为( )
    A.1 B.3 C. D.
    8.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有( )

    A.4 个 B.3 个 C.2 个 D.1 个
    9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    10.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
    尺码/cm
    21.5
    22.0
    22.5
    23.0
    23.5
    人数
    2
    4
    3
    8
    3
    学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是(  )
    A.平均数 B.加权平均数 C.众数 D.中位数
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=,连接CE,CF,则△CEF周长的最小值为_____.

    12.如图,在直角坐标系中,⊙A的圆心A的坐标为(1,0),半径为1,点P为直线y=x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是______________.

    13.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.

    14.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.

    15.不等式组的最大整数解是__________.
    16.计算:×(﹣2)=___________.
    三、解答题(共8题,共72分)
    17.(8分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
    该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
    该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
    18.(8分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
    (1)求一次至少购买多少只计算器,才能以最低价购买?
    (2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
    (3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?
    19.(8分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.

    20.(8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)

    21.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
    (1)若OB=6cm.
    ①求点C的坐标;
    ②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
    (2)点C与点O的距离的最大值是多少cm.

    22.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

    (1)求二次函数的表达式;
    (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;
    (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
    23.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
    (1)问题发现
    ①当θ=0°时,= ;
    ②当θ=180°时,= .
    (2)拓展探究
    试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
    (3)问题解决
    ①在旋转过程中,BE的最大值为 ;
    ②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .

    24.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.

    (1)求出m的值并画出这条抛物线;
    (2)求它与x轴的交点和抛物线顶点的坐标;
    (3)x取什么值时,抛物线在x轴上方?
    (4)x取什么值时,y的值随x值的增大而减小?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    ∵ ,
    ∴.
    即的值在6和7之间.
    故选C.
    2、C
    【解析】
    根据题意列出代数式,化简即可得到结果.
    【详解】
    根据题意得:a÷(1−20%)=a÷= a(元),
    故答案选:C.
    【点睛】
    本题考查的知识点是列代数式,解题的关键是熟练的掌握列代数式.
    3、D
    【解析】
    A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
    B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
    C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
    D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
    故选D.
    4、A
    【解析】
    分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
    【详解】

    由①,得x≥2,
    由②,得x<1,
    所以不等式组的解集是:2≤x<1.
    不等式组的解集在数轴上表示为:

    故选A.
    【点睛】
    本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    5、D
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由抛物线的对称轴可知:,
    ∴,
    由抛物线与轴的交点可知:,
    ∴,
    ∴,故①正确;
    ②抛物线与轴只有一个交点,
    ∴,
    ∴,故②正确;
    ③令,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,故③正确;
    ④由图象可知:令,
    即的解为,
    ∴的根为,故④正确;
    ⑤∵,
    ∴,故⑤正确;
    故选D.
    【点睛】
    考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
    6、D
    【解析】
    ∵AD//BC,DE//AB,∴四边形ABED是平行四边形,
    ∴ , ,
    ∴选项A、C错误,选项D正确,
    选项B错误,
    故选D.
    7、D
    【解析】
    先解方程组求出,再将代入式中,可得解.
    【详解】
    解:

    得,
    所以,
    因为
    所以.
    故选D.
    【点睛】
    本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
    8、C
    【解析】
    由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知 HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据 SAS 推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH 不相似,即可判断④.
    【详解】
    解:∵四边形 ABCD 是正方形,
    ∴AB=BC=CD,
    ∵AG=GE,
    ∴BG=BE,
    ∴∠BEG=45°,
    ∴∠BEA>45°,
    ∵∠AEF=90°,
    ∴∠HEC<45°,
    ∴HC<EC,
    ∴CD﹣CH>BC﹣CE,即 DH>BE,故①错误;
    ∵BG=BE,∠B=90°,
    ∴∠BGE=∠BEG=45°,
    ∴∠AGE=135°,
    ∴∠GAE+∠AEG=45°,
    ∵AE⊥EF,
    ∴∠AEF=90°,
    ∵∠BEG=45°,
    ∴∠AEG+∠FEC=45°,
    ∴∠GAE=∠FEC,
    在△GAE 和△CEF 中,
    ∵AG=CE,
    ∠GAE=∠CEF,
    AE=EF,
    ∴△GAE≌△CEF(SAS)),
    ∴②正确;
    ∴∠AGE=∠ECF=135°,
    ∴∠FCD=135°﹣90°=45°,
    ∴③正确;
    ∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,
    ∴∠FEC<45°,
    ∴△GBE 和△ECH 不相似,
    ∴④错误;
    故选:C.
    【点睛】
    本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.
    9、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    10、C
    【解析】
    根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
    【详解】
    解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
    则商店经理的这一决定应用的统计量是这组数据的众数.
    故选:C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2+4
    【解析】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    【详解】
    如图作CH∥BD,使得CH=EF=2,连接AH交BD由F,则△CEF的周长最小.
    ∵CH=EF,CH∥EF,
    ∴四边形EFHC是平行四边形,
    ∴EC=FH,
    ∵FA=FC,
    ∴EC+CF=FH+AF=AH,
    ∵四边形ABCD是正方形,
    ∴AC⊥BD,∵CH∥DB,
    ∴AC⊥CH,
    ∴∠ACH=90°,
    在Rt△ACH中,AH==4,
    ∴△EFC的周长的最小值=2+4,
    故答案为:2+4.

    【点睛】
    本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.
    12、2
    【解析】
    分析:因为BP=,AB的长不变,当PA最小时切线长PB最小,所以点P是过点A向直线l所作垂线的垂足,利用△APC≌△DOC求出AP的长即可求解.
    详解:如图,作AP⊥直线y=x+3,垂足为P,此时切线长PB最小,设直线与x轴,y轴分别交于D,C.
    ∵A的坐标为(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,
    ∴DC==5,∴AC=DC,
    在△APC与△DOC中,
    ∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,
    ∴△APC≌△DOC,∴AP=OD=3,
    ∴PB==2.
    故答案为2.

    点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.
    13、20.
    【解析】
    分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.
    解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,
    FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.
    点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键.
    14、
    【解析】
    解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
    ∵当x=a时,,∴P1的坐标为(a,),
    当x=2a时,,∴P2的坐标为(2a,),
    ……
    ∴Rt△P1B1P2的面积为,
    Rt△P2B2P3的面积为,
    Rt△P3B3P4的面积为,
    ……
    ∴Rt△Pn-1Bn-1Pn的面积为.
    故答案为:
    15、
    【解析】
    先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
    【详解】
    解:,
    由不等式①得x≤1,
    由不等式②得x>-1,
    其解集是-1<x≤1,
    所以整数解为0,1,1,
    则该不等式组的最大整数解是x=1.
    故答案为:1.
    【点睛】
    考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
    16、-1
    【解析】
    根据“两数相乘,异号得负,并把绝对值相乘”即可求出结论.
    【详解】

    故答案为
    【点睛】
    本题考查了有理数的乘法,牢记“两数相乘,同号得正,异号得负,并把绝对值相乘”是解题的关键.

    三、解答题(共8题,共72分)
    17、 (1);(2).
    【解析】
    (1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;
    (2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.
    【详解】
    (1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.
    故答案为;
    (2)画树状图得:

    ∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.
    【点睛】
    本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    18、(1)1;(3);(3)理由见解析,店家一次应卖45只,最低售价为16.5元,此时利润最大.
    【解析】
    试题分析:(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;
    (3)由于根据(1)得到x≤1,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;
    (3)首先把函数变为y==,然后可以得到函数的增减性,再结合已知条件即可解决问题.
    试题解析:(1)设一次购买x只,则30﹣0.1(x﹣10)=16,解得:x=1.
    答:一次至少买1只,才能以最低价购买;
    (3)当10<x≤1时,y=[30﹣0.1(x﹣10)﹣13]x=,当x>1时,y=(16﹣13)x=4x;
    综上所述:;
    (3)y==,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.
    ②当45<x≤1时,y随x的增大而减小,即当卖的只数越多时,利润变小.
    且当x=46时,y1=303.4,当x=1时,y3=3.∴y1>y3.
    即出现了卖46只赚的钱比卖1只赚的钱多的现象.
    当x=45时,最低售价为30﹣0.1(45﹣10)=16.5(元),此时利润最大.故店家一次应卖45只,最低售价为16.5元,此时利润最大.
    考点:二次函数的应用;二次函数的最值;最值问题;分段函数;分类讨论.
    19、(1)证明见解析;(2).
    【解析】
    (1)连接AF、AC,易证∠EAC=∠DAF,再证明ΔEAC≅ΔDAF,根据全等三角形的性质即可得CE=DF;(2)由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.
    【详解】
    (1)证明:连接,

    ∵正方形旋转至正方形
    ∴,


    在和中,
    ,


    (2).∠DAG、∠BAE、∠FMC、∠CNF;
    由旋转的性质可得∠DAG、∠BAE都是旋转角,在四边形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,
    【点睛】
    本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC≅ΔDAF是解决问题的关键.
    20、小时
    【解析】
    过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.
    【详解】
    解:如图,过点C作CD⊥AB交AB延长线于D.
    在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,
    ∴CD=AC=40海里.
    在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,
    ∴BC=≈=50(海里),
    ∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).

    考点:解直角三角形的应用-方向角问题
    21、(1)①点C的坐标为(-3,9);②滑动的距离为6(﹣1)cm;(2)OC最大值1cm.
    【解析】
    试题分析:(1)①过点C作y轴的垂线,垂足为D,根据30°的直角三角形的性质解答即可;②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,证得△ACE∽△BCD,利用相似三角形的性质解答即可.
    试题解析:解:(1)①过点C作y轴的垂线,垂足为D,如图1:

    在Rt△AOB中,AB=1,OB=6,则BC=6,
    ∴∠BAO=30°,∠ABO=60°,
    又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,
    ∴BD=3,CD=3,
    所以点C的坐标为(﹣3,9);
    ②设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:

    AO=1×cos∠BAO=1×cos30°=6.
    ∴A'O=6﹣x,B'O=6+x,A'B'=AB=1
    在△A'O B'中,由勾股定理得,
    (6﹣x)2+(6+x)2=12,解得:x=6(﹣1),
    ∴滑动的距离为6(﹣1);
    (2)设点C的坐标为(x,y),过C作CE⊥x轴,CD⊥y轴,垂足分别为E,D,如图3:

    则OE=﹣x,OD=y,
    ∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,
    ∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,
    ∴△ACE∽△BCD,
    ∴,即,
    ∴y=﹣x,
    OC2=x2+y2=x2+(﹣x)2=4x2,
    ∴当|x|取最大值时,即C到y轴距离最大时,OC2有最大值,即OC取最大值,如图,即当C'B'旋转到与y轴垂直时.此时OC=1,
    故答案为1.
    考点:相似三角形综合题.
    22、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【解析】
    (1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;
    (2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;
    (3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.
    【详解】
    解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

    解得:b=﹣4,c=3,
    ∴二次函数的表达式为:y=x2﹣4x+3;
    (2)令y=0,则x2﹣4x+3=0,
    解得:x=1或x=3,
    ∴B(3,0),
    ∴BC=3,
    点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,
    ①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3
    ∴P1(0,3+3),P2(0,3﹣3);
    ②当PB=PC时,OP=OB=3,
    ∴P3(0,-3);
    ③当BP=BC时,
    ∵OC=OB=3
    ∴此时P与O重合,
    ∴P4(0,0);
    综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

    (3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,
    ∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,
    当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

    23、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
    【解析】
    (1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
    【详解】
    解:(1)①当θ=0°时,
    在Rt△ABC中,AC=BC=2,
    ∴∠A=∠B=45°,AB=2,
    ∵AD=DE=AB=,
    ∴∠AED=∠A=45°,
    ∴∠ADE=90°,
    ∴DE∥CB,
    ∴,
    ∴,
    ∴,
    故答案为,
    ②当θ=180°时,如图1,

    ∵DE∥BC,
    ∴,
    ∴,
    即:,
    ∴,
    故答案为;
    (2)当0°≤θ<360°时,的大小没有变化,
    理由:∵∠CAB=∠DAE,
    ∴∠CAD=∠BAE,
    ∵,
    ∴△ADC∽△AEB,
    ∴;
    (3)①当点E在BA的延长线时,BE最大,
    在Rt△ADE中,AE=AD=2,
    ∴BE最大=AB+AE=2+2;
    ②如图2,

    当点E在BD上时,
    ∵∠ADE=90°,
    ∴∠ADB=90°,
    在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
    ∴BE=BD+DE=+,
    由(2)知,,
    ∴CD=+1,
    如图3,

    当点D在BE的延长线上时,
    在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
    ∴BE=BD﹣DE=﹣,
    由(2)知,,
    ∴CD=﹣1.
    故答案为 +1或﹣1.
    【点睛】
    此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
    24、(1);(2),;(1);(2)
    【解析】
    试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
    ∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
    列表得:

    X

    ﹣1


    0


    1


    2


    1


    y


    0


    1


    2


    1


    0

    图象如下.

    (2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
    ∴抛物线与x轴的交点为(﹣1,0),(1,0).
    ∵y=﹣x2+2x+1=﹣(x﹣1)2+2
    ∴抛物线顶点坐标为(1,2).
    (1)由图象可知:
    当﹣1<x<1时,抛物线在x轴上方.
    (2)由图象可知:
    当x>1时,y的值随x值的增大而减小
    考点: 二次函数的运用

    相关试卷

    2024年武汉一初慧泉九年级六月中考模拟数学试卷无答案:

    这是一份2024年武汉一初慧泉九年级六月中考模拟数学试卷无答案,共4页。

    湖北武汉一初慧泉中学2023-2024学年八年级数学第一学期期末监测试题含答案:

    这是一份湖北武汉一初慧泉中学2023-2024学年八年级数学第一学期期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,使分式有意义的x的取值范围是,已知,则分式的值为,如图,为线段上任意一点等内容,欢迎下载使用。

    湖北武汉一初慧泉中学2022-2023学年七年级数学第二学期期末质量检测模拟试题含答案:

    这是一份湖北武汉一初慧泉中学2022-2023学年七年级数学第二学期期末质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map