开学活动
搜索
    上传资料 赚现金

    吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析

    吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析第1页
    吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析第2页
    吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份吉林省长春市榆树市重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共22页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么的值等于(  )

    A. B. C. D.
    2.的整数部分是(  )
    A.3 B.5 C.9 D.6
    3.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
    BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )

    A. B. C. D.
    4.在数轴上表示不等式2(1﹣x)<4的解集,正确的是(  )
    A. B.
    C. D.
    5.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式(  )

    A.(a+b)(a﹣b)=a2﹣b2 B.(a﹣b)2=a2﹣2ab+b2
    C.(a+b)2=a2+2ab+b2 D.(a+b)2=(a﹣b)2+4ab
    6.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
    A. B.
    C. D.
    7.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).

    A.两人从起跑线同时出发,同时到达终点
    B.小苏跑全程的平均速度大于小林跑全程的平均速度
    C.小苏前跑过的路程大于小林前跑过的路程
    D.小林在跑最后的过程中,与小苏相遇2次
    8.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    9.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为(  )
    A.60 B.30 C.240 D.120
    10.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为(  )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.在实数范围内分解因式:x2y﹣2y=_____.
    12.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.

    13.如图,点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_____.

    14.已知是整数,则正整数n的最小值为___
    15.若式子在实数范围内有意义,则x的取值范围是_______.
    16.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)

    三、解答题(共8题,共72分)
    17.(8分)如图,已知点D、E为△ABC的边BC上两点.AD=AE,BD=CE,为了判断∠B与∠C的大小关系,请你填空完成下面的推理过程,并在空白括号内注明推理的依据.
    解:过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知)
    AH⊥BC(所作)
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线)
    又∵BD=CE(已知)
    ∴BD+DH=CE+EH(等式的性质)
    即:BH=   
    又∵   (所作)
    ∴AH为线段   的垂直平分线
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等)
    ∴   (等边对等角)

    18.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.

    19.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?
    20.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
    ①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
    时间(第x天)
    1
    2
    3
    10

    日销售量(n件)
    198
    196
    194
    ?

    ②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
    时间(第x天)
    1≤x<50
    50≤x≤90
    销售价格(元/件)
    x+60
    100
    (1)求出第10天日销售量;
    (2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
    (3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
    21.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

    (1)求抛物线的解析式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
    (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    22.(10分)如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
    求证:是的切线;若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
    23.(12分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    24.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
    (1)甲、乙两种材料每千克分别是多少元?
    (2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
    (3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.
    【详解】
    如图,过点P作PE⊥OA于点E,

    ∵OP是∠AOB的平分线,
    ∴PE=PM,
    ∵PN∥OB,
    ∴∠POM=∠OPN,
    ∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,
    ∴=.
    故选:B.
    【点睛】
    本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.
    2、C
    【解析】
    解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.
    3、B
    【解析】
    延长AD交BC的延长线于E,作DF⊥BE于F,

    ∵∠BCD=150°,
    ∴∠DCF=30°,又CD=4,
    ∴DF=2,CF= =2,
    由题意得∠E=30°,
    ∴EF= ,
    ∴BE=BC+CF+EF=6+4,
    ∴AB=BE×tanE=(6+4)×=(2+4)米,
    即电线杆的高度为(2+4)米.
    点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
    4、A
    【解析】
    根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4
    去括号得:2﹣2x<4
    移项得:2x>﹣2,
    系数化为1得:x>﹣1,
    故选A.
    “点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
    5、B
    【解析】
    根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
    【详解】
    ∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;
    ∴(a﹣b)2=a2﹣2ab+b2,
    故选B.
    【点睛】
    本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.
    6、C
    【解析】
    根据全等三角形的判定定理进行判断.
    【详解】
    解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
    故本选项不符合题意;
    C、

    如图1,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
    所以不能判定两个小三角形全等,故本选项符合题意;
    D、

    如图2,∵∠DEC=∠B+∠BDE,
    ∴x°+∠FEC=x°+∠BDE,
    ∴∠FEC=∠BDE,
    ∵BD=EC=2,∠B=∠C,
    ∴△BDE≌△CEF,
    所以能判定两个小三角形全等,故本选项不符合题意;
    由于本题选择可能得不到全等三角形纸片的图形,
    故选C.
    【点睛】
    本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
    7、D
    【解析】
    A.由图可看出小林先到终点,A错误;
    B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;
    C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;
    D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.
    故选D.
    8、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    9、D
    【解析】
    由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x的值,确定出两直角边,即可求出三角形面积.
    【详解】
    如图所示,

    由tanA=,
    设BC=12x,AC=5x,根据勾股定理得:AB=13x,
    由题意得:12x+5x+13x=60,
    解得:x=2,
    ∴BC=24,AC=10,
    则△ABC面积为120,
    故选D.
    【点睛】
    此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.
    10、D
    【解析】
    连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×=,因此可求得S阴影=S扇形AOB﹣2S△AOC=﹣2××2×=﹣2.
    故选D.

    点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、y(x+)(x﹣)
    【解析】
    先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.
    【详解】
    x2y-2y=y(x2-2)=y(x+)(x-).
    故答案为y(x+)(x-).
    【点睛】
    本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.
    12、1
    【解析】
    试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.
    13、﹣4.
    【解析】
    作AN⊥x轴于N,可设A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.
    【详解】
    解:作AN⊥x轴于N,如图所示:
    ∵点A是直线y=﹣x与反比例函数y=的图象在第二象限内的交点,
    ∴可设A(x,﹣x)(x<0),
    在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,
    解得:x=﹣2,
    ∴A(﹣2,2),
    代入y=得:k=﹣2×2=﹣4;
    故答案为﹣4.

    【点睛】
    本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键.
    14、1
    【解析】
    因为是整数,且,则1n是完全平方数,满足条件的最小正整数n为1.
    【详解】
    ∵,且是整数,
    ∴是整数,即1n是完全平方数;
    ∴n的最小正整数值为1.
    故答案为:1.
    【点睛】
    主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.
    15、x≠﹣1
    【解析】
    分式有意义的条件是分母不等于零.
    【详解】
    ∵式子在实数范围内有意义,
    ∴x+1≠0,解得:x≠-1.
    故答案是:x≠-1.
    【点睛】
    考查的是分式有意义的条件,掌握分式有意义的条件是解题的关键.
    16、
    【解析】
    分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.
    详解:连接AA′,如图所示.
    ∵AC=A′C=,AA′=,
    ∴AC2+A′C2=AA′2,
    ∴△ACA′为等腰直角三角形,
    ∴∠ACA′=90°,
    ∴点A走过的路径长=×2πAC=π.
    故答案为:π.

    点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.

    三、解答题(共8题,共72分)
    17、见解析
    【解析】
    根据等腰三角形的性质与判定及线段垂直平分线的性质解答即可.
    【详解】
    过点A作AH⊥BC,垂足为H.
    ∵在△ADE中,AD=AE(已知),
    AH⊥BC(所作),
    ∴DH=EH(等腰三角形底边上的高也是底边上的中线).
    又∵BD=CE(已知),
    ∴BD+DH=CE+EH(等式的性质),
    即:BH=CH.
    ∵AH⊥BC(所作),
    ∴AH为线段BC的垂直平分线.
    ∴AB=AC(线段垂直平分线上的点到线段两个端点的距离相等).
    ∴∠B=∠C(等边对等角).
    【点睛】
    本题考查等腰三角形的性质及线段垂直平分线的性质,等腰三角形的底边中线、底边上的高、顶角的角平分线三线合一;线段垂直平分线上的点到线段两端的距离相等;
    18、见解析
    【解析】
    根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.
    【详解】
    解:∵CE∥DF
    ∴∠ECA=∠FDB,
    在△ECA和△FDB中

    ∴△ECA≌△FDB,
    ∴AE=FB.
    【点睛】
    本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.
    19、每件乙种商品的价格为1元,每件甲种商品的价格为70元
    【解析】
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.
    【详解】
    解:
    设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,
    根据题意得:,
    解得:x=70,
    经检验,x=70是原方程的解,
    ∴x﹣10=1.
    答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.
    【点睛】
    本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.
    20、(1)1件;(2)第40天,利润最大7200元;(3)46天
    【解析】
    试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;
    (2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;
    (3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.
    试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,
    所以n关于x的一次函数表达式为n=-2x+200;
    当x=10时,n=-2×10+200=1.
    (2)设销售该产品每天利润为y元,y关于x的函数表达式为:
    当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,
    ∵-2<0,∴当x=40时,y有最大值,最大值是7200;
    当50≤x≤90时,y=-120x+12000,
    ∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
    综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
    (3)在该产品销售的过程中,共有46天销售利润不低于5400元.
    21、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,).
    【解析】
    分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;
    (2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;
    (3)存在四种情况:
    如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.
    详解:(1)如图1,设抛物线与x轴的另一个交点为D,

    由对称性得:D(3,0),
    设抛物线的解析式为:y=a(x-1)(x-3),
    把A(0,3)代入得:3=3a,
    a=1,
    ∴抛物线的解析式;y=x2-4x+3;
    (2)如图2,设P(m,m2-4m+3),

    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    易得OE的解析式为:y=x,
    过P作PG∥y轴,交OE于点G,
    ∴G(m,m),
    ∴PG=m-(m2-4m+3)=-m2+5m-3,
    ∴S四边形AOPE=S△AOE+S△POE,
    =×3×3+PG•AE,
    =+×3×(-m2+5m-3),
    =-m2+m,
    =(m-)2+,
    ∵-<0,
    ∴当m=时,S有最大值是;
    (3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,

    ∵△OPF是等腰直角三角形,且OP=PF,
    易得△OMP≌△PNF,
    ∴OM=PN,
    ∵P(m,m2-4m+3),
    则-m2+4m-3=2-m,
    解得:m=或,
    ∴P的坐标为(,)或(,);
    如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,

    同理得△ONP≌△PMF,
    ∴PN=FM,
    则-m2+4m-3=m-2,
    解得:x=或;
    P的坐标为(,)或(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.
    22、(1)证明见解析;(2)
    【解析】
    (1)连接OD,根据角平分线的定义和等腰三角形的性质可得∠ADO=∠CAD,即可证明OD//AC,进而可得∠ODB=90°,即可得答案;(2)根据圆周角定理可得弧弧弧,即可证明∠BOD=60°,在中,利用∠BOD的正切值可求出BD的长,利用S阴影=S△BOD-S扇形DOE即可得答案.
    【详解】
    (1)连接
    ∵平分,
    ∴,
    ∵ ,
    ∴,
    ∴,
    ∴OD//AC,
    ∴,

    又是的半径,
    ∴是的切线
    (2)由题意得
    ∵是弧的中点
    ∴弧弧

    ∴弧弧
    ∴弧弧弧

    在中


    .

    【点睛】
    本题考查的是切线的判定、圆周角定理及扇形面积,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半.熟练掌握相关定理及公式是解题关键.
    23、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    24、(1)甲种材料每千克25元,乙种材料每千克35元.(2)共有四种方案;(3)生产A产品21件,B产品39件成本最低.
    【解析】
    试题分析:(1)、首先设甲种材料每千克x元, 乙种材料每千克y元,根据题意列出二元一次方程组得出答案;(2)、设生产B产品a件,则A产品(60-a)件,根据题意列出不等式组,然后求出a的取值范围,得出方案;得出生产成本w与a的函数关系式,根据函数的增减性得出答案.
    试题解析:(1)设甲种材料每千克x元, 乙种材料每千克y元,
    依题意得:解得:
    答:甲种材料每千克25元, 乙种材料每千克35元.
    (2)生产B产品a件,生产A产品(60-a)件. 依题意得:
    解得:
    ∵a的值为非负整数 ∴a=39、40、41、42
    ∴共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件
    (3)、答:生产A产品21件,B产品39件成本最低.
    设生产成本为W元,则W与a的关系式为:w=(25×4+35×1+40)(60-a)+(35×+25×3+50)a=55a+10500
    ∵k=55>0 ∴W随a增大而增大∴当a=39时,总成本最低.
    考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.

    相关试卷

    廊坊三中重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析:

    这是一份廊坊三中重点名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,的整数部分是,下列各式计算正确的是,下列各数中,无理数是等内容,欢迎下载使用。

    2022届吉林省长春市榆树市重点名校初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022届吉林省长春市榆树市重点名校初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    2022届吉林省长春市榆树市重点名校中考数学全真模拟试题含解析:

    这是一份2022届吉林省长春市榆树市重点名校中考数学全真模拟试题含解析,共20页。试卷主要包含了下列实数中是无理数的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map