年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023版步步高新高考人教A版一轮复习讲义第六章 §6.2 等差数列

    2023版步步高新高考人教A版一轮复习讲义第六章 §6.2 等差数列第1页
    2023版步步高新高考人教A版一轮复习讲义第六章 §6.2 等差数列第2页
    2023版步步高新高考人教A版一轮复习讲义第六章 §6.2 等差数列第3页
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023版步步高新高考人教A版一轮复习讲义第六章 §6.2 等差数列

    展开

    §6.2 等差数列考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知识梳理1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为an-an-1=d(常数)(n≥2,n∈N*).(2)等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=eq \f(a+b,2).2.等差数列的有关公式(1)通项公式:an=a1+(n-1)d.(2)前n项和公式:Sn=na1+eq \f(nn-1,2)d或Sn=eq \f(na1+an,2).3.等差数列的常用性质(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.(5)S2n-1=(2n-1)an.(6)等差数列{an}的前n项和为Sn,eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))为等差数列.常用结论1.已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列,且公差为p.2.在等差数列{an}中,a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.3.等差数列{an}的单调性:当d>0时,{an}是递增数列;当d<0时,{an}是递减数列;当d=0时,{an}是常数列.4.数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).这里公差d=2A.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等差数列{an}的单调性是由公差d决定的.( √ )(2)若一个数列每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(3)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.( √ )(4)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列.( √ )教材改编题1.已知等差数列{an}中,a2=3,前5项和S5=10,则数列{an}的公差为(  )A.-1 B.-eq \f(5,2)C.-2 D.-4答案 A解析 设等差数列{an}的公差为d,∵S5=5a3=10,∴a3=a2+d=2,又∵a2=3,∴d=-1.2.在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a5=________.答案 903.已知{an}是等差数列,其前n项和为Sn,若a3=2,且S6=30,则S9=________.答案 126解析 由已知可得eq \b\lc\{\rc\ (\a\vs4\al\co1(a1+2d=2,,2a1+5d=10,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(a1=-10,,d=6.))∴S9=9a1+eq \f(9×8,2)d=-90+36×6=126.题型一 等差数列基本量的运算例1 (1)(多选)记Sn为等差数列{an}的前n项和.已知S4=0,a5=5,则下列选项正确的是(  )A.a2+a3=0 B.an=2n-5C.Sn=n(n-4) D.d=-2答案 ABC解析 S4=eq \f(4×a1+a4,2)=0,∴a1+a4=a2+a3=0,A正确;a5=a1+4d=5,①a1+a4=a1+a1+3d=0,②联立①②得eq \b\lc\{\rc\ (\a\vs4\al\co1(d=2,,a1=-3,))∴an=-3+(n-1)×2=2n-5,B正确,D错误;Sn=-3n+eq \f(nn-1,2)×2=n2-4n,C正确.(2)(2022·内蒙古模拟)已知等差数列{an}中,Sn为其前n项和,S4=24,S9=99,则a7等于(  )A.13 B.14 C.15 D.16答案 C解析 ∵eq \b\lc\{\rc\ (\a\vs4\al\co1(S4=24,,S9=99,))∴eq \b\lc\{\rc\ (\a\vs4\al\co1(4a1+6d=24,,9a1+36d=99,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(a1=3,,d=2.))则a7=a1+6d=15.教师备选1.已知等差数列{an}的前n项和为Sn,若a3=5,S4=24,则a9等于(  )A.-5 B.-7C.-9 D.-11答案 B解析 ∵a3=5,S4=24,∴a1+2d=5,4a1+6d=24,解得a1=9,d=-2,∴an=11-2n,∴a9=11-2×9=-7.2.已知{an}是公差不为零的等差数列,且a1+a10=a9,则eq \f(a1+a2+…+a9,a10)=________.答案 eq \f(27,8)解析 ∵a1+a10=a9,∴a1+a1+9d=a1+8d,即a1=-d,∴a1+a2+…+a9=S9=9a1+eq \f(9×8,2)d=27d,a10=a1+9d=8d,∴eq \f(a1+a2+…+a9,a10)=eq \f(27,8).思维升华 (1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.跟踪训练1 (1)(多选)记Sn为等差数列{an}的前n项和.若a3+a6=24,S6=48,则下列正确的是(  )A.a1=-2 B.a1=2C.d=4 D.d=-4答案 AC解析 因为eq \b\lc\{\rc\ (\a\vs4\al\co1(a3+a6=2a1+7d=24,,S6=6a1+15d=48,))所以eq \b\lc\{\rc\ (\a\vs4\al\co1(a1=-2,,d=4.))(2)(2020·全国Ⅱ)记Sn为等差数列{an}的前n项和.若a1=-2,a2+a6=2,则S10=______.答案 25解析 设等差数列{an}的公差为d,则a2+a6=2a1+6d=2.因为a1=-2,所以d=1.所以S10=10×(-2)+eq \f(10×9,2)×1=25.题型二 等差数列的判定与证明例2 (2021·全国甲卷)已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等差数列;②数列{eq \r(Sn)}是等差数列;③a2=3a1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{an}是等差数列,a2=3a1.设数列{an}的公差为d,则a2=3a1=a1+d,得d=2a1,所以Sn=na1+eq \f(nn-1,2)d=n2a1.因为数列{an}的各项均为正数,所以eq \r(Sn)=neq \r(a1),所以eq \r(Sn+1)-eq \r(Sn)=(n+1)eq \r(a1)-neq \r(a1)=eq \r(a1)(常数),所以数列{eq \r(Sn)}是等差数列.①②⇒③.已知{an}是等差数列,{eq \r(Sn)}是等差数列.设数列{an}的公差为d,则Sn=na1+eq \f(nn-1,2)d=eq \f(1,2)n2d+eq \b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n.因为数列{eq \r(Sn)}是等差数列,所以数列{eq \r(Sn)}的通项公式是关于n的一次函数,则a1-eq \f(d,2)=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{eq \r(Sn)}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{eq \r(Sn)}的公差为d,d>0,则eq \r(S2)-eq \r(S1)=eq \r(4a1)-eq \r(a1)=d,得a1=d2,所以eq \r(Sn)=eq \r(S1)+(n-1)d=nd,所以Sn=n2d2,所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一次函数,且a1=d2满足上式,所以数列{an}是等差数列.教师备选(2022·烟台模拟)已知在数列{an}中,a1=1,an=2an-1+1(n≥2,n∈N*),记bn=log2(an+1).(1)判断{bn}是否为等差数列,并说明理由;(2)求数列{an}的通项公式.解 (1){bn}是等差数列,理由如下:b1=log2(a1+1)=log22=1,当n≥2时,bn-bn-1=log2(an+1)-log2(an-1+1)=log2eq \f(an+1,an-1+1)=log2eq \f(2an-1+2,an-1+1)=1,∴{bn}是以1为首项,1为公差的等差数列.(2)由(1)知,bn=1+(n-1)×1=n,∴an+1==2n,∴an=2n-1.思维升华 判断数列{an}是等差数列的常用方法(1)定义法:对任意n∈N*,an+1-an是同一常数.(2)等差中项法:对任意n≥2,n∈N*,满足2an=an+1+an-1.(3)通项公式法:对任意n∈N*,都满足an=pn+q(p,q为常数).(4)前n项和公式法:对任意n∈N*,都满足Sn=An2+Bn(A,B为常数).跟踪训练2 已知数列{an}满足a1=1,且nan+1-(n+1)an=2n2+2n.(1)求a2,a3;(2)证明数列eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是等差数列,并求{an}的通项公式.解 (1)由题意可得a2-2a1=4,则a2=2a1+4,又a1=1,所以a2=6.由2a3-3a2=12,得2a3=12+3a2,所以a3=15.(2)由已知得eq \f(nan+1-n+1an,nn+1)=2,即eq \f(an+1,n+1)-eq \f(an,n)=2,所以数列eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(an,n)))是首项为eq \f(a1,1)=1,公差为d=2的等差数列,则eq \f(an,n)=1+2(n-1)=2n-1,所以an=2n2-n.题型三 等差数列的性质命题点1 等差数列项的性质例3 (1)已知数列{an}满足2an=an-1+an+1(n≥2),a2+a4+a6=12,a1+a3+a5=9,则a3+a4等于(  )A.6 B.7C.8 D.9答案 B解析 因为2an=an-1+an+1,所以{an}是等差数列,由等差数列性质可得a2+a4+a6=3a4=12,a1+a3+a5=3a3=9,所以a3+a4=3+4=7.(2)(2022·宁波模拟)已知等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=150,则S9等于(  )A.225 B.250C.270 D.300答案 C解析 等差数列{an}的前n项和为Sn,且a3+a4+a5+a6+a7=150,∴a3+a4+a5+a6+a7=5a5=150,解得a5=30,∴S9=eq \f(9,2)(a1+a9)=9a5=270.命题点2 等差数列前n项和的性质例4 (1)已知等差数列{an}的前n项和为Sn,若S10=10,S20=60,则S40等于(  )A.110 B.150C.210 D.280答案 D解析 因为等差数列{an}的前n项和为Sn,所以S10,S20-S10,S30-S20,S40-S30也成等差数列.故(S30-S20)+S10=2(S20-S10),所以S30=150.又因为(S20-S10)+(S40-S30)=2(S30-S20),所以S40=280.(2)等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意正整数n都有eq \f(Sn,Tn)=eq \f(2n-1,3n-2),则eq \f(a11,b6+b10)+eq \f(a5,b7+b9)的值为________.答案 eq \f(29,43)解析 eq \f(a11,b6+b10)+eq \f(a5,b7+b9)=eq \f(a11+a5,2b8)=eq \f(2a8,2b8)=eq \f(a8,b8),∴eq \f(a8,b8)=eq \f(S2×8-1,T2×8-1)=eq \f(S15,T15)=eq \f(2×15-1,3×15-2)=eq \f(29,43).教师备选1.若等差数列{an}的前15项和S15=30,则2a5-a6-a10+a14等于(  )A.2 B.3C.4 D.5答案 A解析 ∵S15=30,∴eq \f(15,2)(a1+a15)=30,∴a1+a15=4,∴2a8=4,∴a8=2.∴2a5-a6-a10+a14=a4+a6-a6-a10+a14=a4-a10+a14=a10+a8-a10=a8=2.2.已知Sn是等差数列{an}的前n项和,若a1=-2 020,eq \f(S2 020,2 020)-eq \f(S2 014,2 014)=6,则S2 023等于(  )A.2 023 B.-2 023C.4 046 D.-4 046答案 C解析 ∵eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))为等差数列,设公差为d′,则eq \f(S2 020,2 020)-eq \f(S2 014,2 014)=6d′=6,∴d′=1,首项为eq \f(S1,1)=-2 020,∴eq \f(S2 023,2 023)=-2 020+(2 023-1)×1=2,∴S2 023=2 023×2=4 046.思维升华 (1)项的性质:在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*),则am+an=ap+aq.(2)和的性质:在等差数列{an}中,Sn为其前n项和,则①S2n=n(a1+a2n)=…=n(an+an+1).②S2n-1=(2n-1)an.③依次k项和成等差数列,即Sk,S2k-Sk,S3k-S2k,…成等差数列.跟踪训练3 (1)(2021·北京){an}和{bn}是两个等差数列,其中eq \f(ak,bk)(1≤k≤5)为常值,若a1=288,a5=96,b1=192,则b3等于(  )A.64 B.128 C.256 D.512答案 B解析 由已知条件可得eq \f(a1,b1)=eq \f(a5,b5),则b5=eq \f(a5b1,a1)=eq \f(96×192,288)=64,因此,b3=eq \f(b1+b5,2)=eq \f(192+64,2)=128.(2)(2022·郴州模拟)已知Sn为等差数列{an}的前n项和,满足a3=3a1,a2=3a1-1,则数列eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))的前10项和为(  )A.eq \f(55,2) B.55 C.eq \f(65,2) D.65答案 C解析 设等差数列{an}的公差为d,则eq \b\lc\{\rc\ (\a\vs4\al\co1(a1+2d=3a1,,a1+d=3a1-1,))所以a1=1,d=1,所以Sn=n+eq \f(nn-1,2)=eq \f(nn+1,2),所以eq \f(Sn,n)=eq \f(n+1,2),所以eq \f(Sn+1,n+1)-eq \f(Sn,n)=eq \f(n+1+1,2)-eq \f(n+1,2)=eq \f(1,2),所以eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是以1为首项,eq \f(1,2)为公差的等差数列,数列eq \b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))的前10项和T10=10+eq \f(10×(10-1),2)×eq \f(1,2)=eq \f(65,2).课时精练1.(2022·芜湖模拟)在等差数列{an}中,若a3+a9=30,a4=11,则{an}的公差为(  )A.-2 B.2 C.-3 D.3答案 B解析 设公差为d,因为a3+a9=2a6=30,所以a6=15,从而d=eq \f(a6-a4,6-4)=2.2.(2022·莆田模拟)已知等差数列{an}满足a3+a6+a8+a11=12,则2a9-a11的值为(  )A.-3 B.3 C.-12 D.12答案 B解析 由等差中项的性质可得,a3+a6+a8+a11=4a7=12,解得a7=3,∵a7+a11=2a9,∴2a9-a11=a7=3.3.(2022·铁岭模拟)中国古代数学名著《张邱建算经》中有如下问题:今有十等人,每等一人,宫赐金以等次差降之(等差数列),上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中间三人未到者,亦依等次更给.则第一等人(得金最多者)得金斤数是(  )A.eq \f(37,26) B.eq \f(37,27)C.eq \f(52,39) D.eq \f(56,39)答案 A解析 由题设知在等差数列{an}中,a1+a2+a3=4,a7+a8+a9+a10=3.所以3a1+3d=4,4a1+30d=3,解得a1=eq \f(37,26).4.(2022·山东省实验中学模拟)已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为(  )A.28 B.29C.30 D.31答案 B解析 设等差数列{an}共有2n+1项,则S奇=a1+a3+a5+…+a2n+1,S偶=a2+a4+a6+…+a2n,该数列的中间项为an+1,又S奇-S偶=a1+(a3-a2)+(a5-a4)+…+(a2n+1-a2n)=a1+d+d+…+d=a1+nd=an+1,所以an+1=S奇-S偶=319-290=29.5.(多选)等差数列{an}的公差为d,前n项和为Sn,当首项a1和d变化时,a3+a8+a13是一个定值,则下列各数也为定值的有(  )A.a7 B.a8 C.S15 D.S16答案 BC解析 由等差中项的性质可得a3+a8+a13=3a8为定值,则a8为定值,S15=eq \f(15\b\lc\(\rc\)(\a\vs4\al\co1(a1+a15)),2)=15a8为定值,但S16=eq \f(16\b\lc\(\rc\)(\a\vs4\al\co1(a1+a16)),2)=8eq \b\lc\(\rc\)(\a\vs4\al\co1(a8+a9))不是定值.6.(多选)已知Sn是等差数列{an}(n∈N*)的前n项和,且S8>S9>S7,则下列结论正确的是(  )A.公差da9D.满足Sn>0的n的个数为15答案 ABC解析 ∵S8>S9,且S9=S8+a9,∴S8>S8+a9,即a9S7,S8=S7+a8,∴S7+a8>S7,即a8>0,∴d=a9-a8S7,S9=S7+a8+a9,∴S7+a8+a9>S7,即a8+a9>0,又a1+a16=a8+a9,∴S16=eq \f(16a1+a16,2)=8(a8+a9)>0,又a1+a15=2a8,∴S15=eq \f(15a1+a15,2)=15a8>0,又a1+a17=2a9,且a90,因为S15=eq \f(15×a1+a15,2)=15a80,d

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map