江苏省盐城市阜宁实验2022年中考联考数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )
A.a=﹣2 B.a= C.a=1 D.a=
2.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为( )
A.6 B.8 C.10 D.12
3.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为( )
A.2 B.3 C.4 D.5
4.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是( )
A.70° B.44° C.34° D.24°
5.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
A.2 B.8 C.﹣2 D.﹣8
6.已知二次函数y=-x2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x的图象上,则平移后的抛物线解析式为( )
A.y=-x2-4x-1 B.y=-x2-4x-2 C.y=-x2+2x-1 D.y=-x2+2x-2
7.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
8.的算术平方根是( )
A.9 B.±9 C.±3 D.3
9.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A.3步 B.5步 C.6步 D.8步
10.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( )
A.350 B.351 C.356 D.358
11.计算的结果是( )
A. B. C. D.2
12.如图在△ABC中,AC=BC,过点C作CD⊥AB,垂足为点D,过D作DE∥BC交AC于点E,若BD=6,AE=5,则sin∠EDC的值为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.函数y=+的自变量x的取值范围是_____.
14.若反比例函数的图象位于第二、四象限,则的取值范围是__.
15.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
16.双察下列等式:,,,…则第n个等式为_____.(用含n的式子表示)
17.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.
18.如图所示,摆第一个“小屋子”要5枚棋子,摆第二个要11枚棋子,摆第三个要17枚棋子,则摆第30个“小屋子”要___枚棋子.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
20.(6分)对于方程=1,某同学解法如下:
解:方程两边同乘6,得3x﹣2(x﹣1)=1 ①
去括号,得3x﹣2x﹣2=1 ②
合并同类项,得x﹣2=1 ③
解得x=3 ④
∴原方程的解为x=3 ⑤上述解答过程中的错误步骤有 (填序号);请写出正确的解答过程.
21.(6分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、
求二次函数的解析式;写出使一次函数值大于二次函数值的的取值范围;若直线与轴的交点为点,连结、,求的面积;
22.(8分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.
求:△ABD的面积.
23.(8分)如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F,求证:AE=AF.
24.(10分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
25.(10分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC.(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,≈1.73)
26.(12分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
(1)求抛物y=x2+bx+c线的解析式.
(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).
27.(12分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.
【详解】
(1)当时,,此时,
∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;
(2)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;
(3)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;
(4)当时,,此时,
∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;
故选A.
【点睛】
熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.
2、B
【解析】
根据勾股定理得到OA==5,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.
【详解】
∵点A的坐标为(﹣3,﹣4),
∴OA==5,
∵四边形AOCB是菱形,
∴AB=OA=5,AB∥x轴,
∴B(﹣8,﹣4),
∵点E是菱形AOCB的中心,
∴E(﹣4,﹣2),
∴k=﹣4×(﹣2)=8,
故选B.
【点睛】
本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.
3、C
【解析】
根据左视图发现最右上角共有2个小立方体,综合以上,可以发现一共有4个立方体,
主视图和左视图都是上下两行,所以这个几何体共由上下两层小正方体组成,俯视图有3个小正方形,所以下面一层共有3个小正方体,结合主视图和左视图的形状可知上面一层只有最左边有个小正方体,故这个几何体由4个小正方体组成,其体积是4.
故选C.
【点睛】
错因分析 容易题,失分原因:未掌握通过三视图还原几何体的方法.
4、C
【解析】
易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
【详解】
∵AB=BD,∠B=40°,
∴∠ADB=70°,
∵∠C=36°,
∴∠DAC=∠ADB﹣∠C=34°.
故选C.
【点睛】
本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
5、A
【解析】
试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
考点:一次函数图象上点的坐标特征.
6、D
【解析】
把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数,而平移时,顶点的纵坐标不变,即可求得函数解析式.
【详解】
解:∵y=﹣x1﹣4x﹣5=﹣(x+1)1﹣1,∴顶点坐标是(﹣1,﹣1).
由题知:把这个二次函数的图象左、右平移,顶点恰好落在正比例函数y=﹣x的图象上,即顶点的横纵坐标互为相反数.
∵左、右平移时,顶点的纵坐标不变,∴平移后的顶点坐标为(1,﹣1),∴函数解析式是:y=﹣(x-1)1-1=﹣x1+1x﹣1,即:y=﹣x1+1x﹣1.
故选D.
【点睛】
本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律,上下平移时,点的横坐标不变;左右平移时,点的纵坐标不变.同时考查了二次函数的性质,正比例函数y=﹣x的图象上点的坐标特征.
7、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
8、D
【解析】
根据算术平方根的定义求解.
【详解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.
【点睛】
考核知识点:算术平方根.理解定义是关键.
9、C
【解析】
试题解析:根据勾股定理得:斜边为
则该直角三角形能容纳的圆形(内切圆)半径 (步),即直径为6步,
故选C
10、B
【解析】
根据题意确定出小昱和阿帆所写的数字,设小昱所写的第n个数为101,根据规律确定出n的值,即可确定出阿帆在该页写的数.
【详解】
解:小昱所写的数为 1,3,5,1,…,101,…;阿帆所写的数为 1,8,15,22,…,
设小昱所写的第n个数为101,
根据题意得:101=1+(n-1)×2,
整理得:2(n-1)=100,即n-1=50,
解得:n=51,
则阿帆所写的第51个数为1+(51-1)×1=1+50×1=1+350=2.
故选B.
【点睛】
此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.
11、C
【解析】
化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.
【详解】
原式=3﹣2·=3﹣=.
故选C.
【点睛】
本题主要考查二次根式的化简以及二次根式的混合运算.
12、A
【解析】
由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.
【详解】
∵△ABC中,AC=BC,过点C作CD⊥AB,
∴AD=DB=6,∠BDC=∠ADC=90°,
∵AE=5,DE∥BC,
∴AC=2AE=10,∠EDC=∠BCD,
∴sin∠EDC=sin∠BCD=,
故选:A.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x≥1且x≠3
【解析】
根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.
【详解】
根据二次根式和分式有意义的条件可得:
解得:且
故答案为:且
【点睛】
考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.
14、k>1
【解析】
根据图象在第二、四象限,利用反比例函数的性质可以确定1-k的符号,即可解答.
【详解】
∵反比例函数y=的图象在第二、四象限,
∴1-k<0,
∴k>1.
故答案为:k>1.
【点睛】
此题主要考查了反比例函数的性质,熟练记忆当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限是解决问题的关键.
15、3cm.
【解析】
根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
【详解】
解:∵四边形ABCD是矩形,AC=6cm
∴OA=OC=OB=OD=3cm,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=3cm,
故答案为:3cm
【点睛】
本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
16、=
【解析】
探究规律后,写出第n个等式即可求解.
【详解】
解:
…
则第n个等式为
故答案为:
【点睛】
本题主要考查二次根式的应用,找到规律是解题的关键.
17、-1
【解析】
试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.
考点:反比例外函数k的几何意义.
18、1.
【解析】
根据题意分析可得:第1个图案中棋子的个数5个,第2个图案中棋子的个数5+6=11个,…,每个图形都比前一个图形多用6个,继而可求出第30个“小屋子”需要的棋子数.
【详解】
根据题意分析可得:第1个图案中棋子的个数5个.
第2个图案中棋子的个数5+6=11个.
….
每个图形都比前一个图形多用6个.
∴第30个图案中棋子的个数为5+29×6=1个.
故答案为1.
【点睛】
考核知识点:图形的规律.分析出一般数量关系是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
20、(1)错误步骤在第①②步.(2)x=4.
【解析】
(1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
(2)注重改正错误,按以上步骤进行即可.
【详解】
解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6 ①
去括号,得3x﹣2x+2=6 ②
∴错误步骤在第①②步.
(2)方程两边同乘6,得3x﹣2(x﹣1)=6
去括号,得3x﹣2x+2=6
合并同类项,得x+2=6
解得x=4
∴原方程的解为x=4
【点睛】
本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.
21、(1);(2)或;(3)1.
【解析】
(1)直接将已知点代入函数解析式求出即可;
(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;
(3)分别得出EO,AB的长,进而得出面积.
【详解】
(1)∵二次函数与轴的交点为和
∴设二次函数的解析式为:
∵在抛物线上,
∴3=a(0+3)(0-1),
解得a=-1,
所以解析式为:;
(2)=−x2−2x+3,
∴二次函数的对称轴为直线;
∵点、是二次函数图象上的一对对称点;
∴;
∴使一次函数大于二次函数的的取值范围为或;
(3)设直线BD:y=mx+n,
代入B(1,0),D(−2,3)得,
解得:,
故直线BD的解析式为:y=−x+1,
把x=0代入得,y=3,
所以E(0,1),
∴OE=1,
又∵AB=1,
∴S△ADE=×1×3−×1×1=1.
【点睛】
此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.
22、2.
【解析】
试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.
解:在△ADC中,AD=15,AC=12,DC=9,
AC2+DC2=122+92=152=AD2,
即AC2+DC2=AD2,
∴△ADC是直角三角形,∠C=90°,
在Rt△ABC中,BC===16,
∴BD=BC﹣DC=16﹣9=7,
∴△ABD的面积=×7×12=2.
23、见解析
【解析】
根据角平分线的定义可得∠ABF=∠CBF,由已知条件可得∠ABF+∠AFB=∠CBF+∠BED=90°,根据余角的性质可得∠AFB=∠BED,即可求得∠AFE=∠AEF,由等腰三角形的判定即可证得结论.
【详解】
∵BF 平分∠ABC,
∴∠ABF=∠CBF,
∵∠BAC=90°,AD⊥BC,
∴∠ABF+∠AFB=∠CBF+∠BED=90°,
∴∠AFB=∠BED,
∵∠AEF=∠BED,
∴∠AFE=∠AEF,
∴AE=AF.
【点睛】
本题考查了等腰三角形的判定、直角三角形的性质,根据余角的性质证得∠AFB=∠BED是解题的关键.
24、
【解析】
试题分析:过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA﹣AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.
试题解析:过O作OF⊥CD,交CD于点F,连接OD,
∴F为CD的中点,即CF=DF,
∵AE=2,EB=6,
∴AB=AE+EB=2+6=8,
∴OA=4,
∴OE=OA﹣AE=4﹣2=2,
在Rt△OEF中,∠DEB=30°,
∴OF=OE=1,
在Rt△ODF中,OF=1,OD=4,
根据勾股定理得:DF==,
则CD=2DF=2.
考点:垂径定理;勾股定理.
25、工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
【解析】
解:在Rt△BAE中,∠BAE=680,BE=162米,∴(米).
在Rt△DEC中,∠DGE=600,DE=176.6米,∴(米).
∴(米).
∴工程完工后背水坡底端水平方向增加的宽度AC约为37.3米.
在Rt△BAE和Rt△DEC中,应用正切函数分别求出AE和CE的长即可求得AC的长.
26、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
【解析】
(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
(3)由题得出tanBAO=,分情况讨论求得F,H坐标.
【详解】
(1)把点、代入得,
解得,,
∴抛物线的解析式为.
(2)由得,∴顶点的坐标为,
把代入得解得,∴直线解析式为,
设点,代入得,∴得,
设点,代入得,∴得,
由于直线与轴、轴分别交于点、
∴易得、,
∴,
∴,∵点在直线上,
∴,
∴,即,
∵,
∴以点为圆心,半径长为4的圆与直线相离.
(3)点、的坐标分别为、或、或、.
C(-1,-1),A(0,6),B(1,3)
可得tanBAO=,
情况1:tanCF1M= = , CF1=9,
M F1=6,H1F1=5, F1(8,8),H1(3,3);
情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
【点睛】
本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
27、1.
【解析】
试题分析:根据相似三角形的判定与性质,可得答案.
试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴,∴DE===1.
考点:相似三角形的判定与性质.
2023-2024学年江苏省盐城市阜宁实验中学八年级(上)月考数学试卷(10月份)(含解析): 这是一份2023-2024学年江苏省盐城市阜宁实验中学八年级(上)月考数学试卷(10月份)(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省盐城市阜宁县中考数学二模试卷(含解析): 这是一份2023年江苏省盐城市阜宁县中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年江苏省盐城市阜宁县益林中学中考数学三调试卷(含解析): 这是一份2023年江苏省盐城市阜宁县益林中学中考数学三调试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。