|试卷下载
搜索
    上传资料 赚现金
    江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析
    立即下载
    加入资料篮
    江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析01
    江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析02
    江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析

    展开
    这是一份江苏省盐城市名校2022年中考数学最后冲刺浓缩精华卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.|﹣3|的值是( )
    A.3B.C.﹣3D.﹣
    2.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )
    A.B.C.D.
    3.对于任意实数k,关于x的方程的根的情况为
    A.有两个相等的实数根B.没有实数根
    C.有两个不相等的实数根D.无法确定
    4.如图,在中,点D为AC边上一点,则CD的长为( )
    A.1B.C.2D.
    5.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为( )
    A.4.5mB.4.8mC.5.5mD.6 m
    6.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )
    A.5B.C.D.7
    7.下列安全标志图中,是中心对称图形的是( )
    A.B.C.D.
    8.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是( )
    A.点B、点C都在⊙A内B.点C在⊙A内,点B在⊙A外
    C.点B在⊙A内,点C在⊙A外D.点B、点C都在⊙A外
    9.下列各点中,在二次函数的图象上的是( )
    A.B.C.D.
    10.等式成立的x的取值范围在数轴上可表示为( )
    A.B.C.D.
    11.如图的几何体中,主视图是中心对称图形的是( )
    A.B.C.D.
    12.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
    A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)
    C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A,B分别在l3,l2上,则sinα的值是_____.
    14.分解因式:4a3b﹣ab=_____.
    15.如图,二次函数y=a(x﹣2)2+k(a>0)的图象过原点,与x轴正半轴交于点A,矩形OABC的顶点C的坐标为(0,﹣2),点P为x轴上任意一点,连结PB、PC.则△PBC的面积为_____.
    16.某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为_____.
    17.如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_____.
    18.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
    20.(6分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
    (1)求证:EF是⊙O的切线;
    (2)求证:=4BP•QP.
    21.(6分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.
    22.(8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
    (1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
    (2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
    请你根据以上图表提供的信息解答下列问题:
    ①a=_____,b=_____;
    ②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
    ③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
    23.(8分)如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
    请填空完成下列证明.
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则 CD=AB=AD ( ).
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形.
    ∴∠A= °.
    ∴∠B=90°﹣∠A=30°.
    24.(10分)已知,数轴上三个点A、O、P,点O是原点,固定不动,点A和B可以移动,点A表示的数为,点B表示的数为.
    (1)若A、B移动到如图所示位置,计算的值.
    (2)在(1)的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数,并计算.
    (3)在(1)的情况下,点A不动,点B向右移动15.3个单位长,此时比大多少?请列式计算.
    25.(10分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
    (I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
    (II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
    (III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).
    26.(12分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
    ①若点P的纵坐标为2,求直线AB的函数表达式.
    ②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
    27.(12分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    分析:根据绝对值的定义回答即可.
    详解:负数的绝对值等于它的相反数,

    故选A.
    点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.
    2、B
    【解析】
    首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.
    【详解】
    解:画树状图得:
    ∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),
    ∴点(m,n)在函数y=图象上的概率是:.
    故选B.
    【点睛】
    此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.
    3、C
    【解析】
    判断一元二次方程的根的情况,只要看根的判别式的值的符号即可:
    ∵a=1,b=,c=,
    ∴.
    ∴此方程有两个不相等的实数根.故选C.
    4、C
    【解析】
    根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.
    【详解】
    ∵∠DBC=∠A,∠C=∠C,
    ∴△BCD∽△ACB,


    ∴CD=2.
    故选:C.
    【点睛】
    主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    5、D
    【解析】
    根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.
    【详解】
    解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,
    ∵△ABC∽△EDC,
    ∴,
    即,
    解得:AB=6,
    故选:D.
    【点睛】
    本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.
    6、A
    【解析】
    连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
    【详解】
    解:如图,
    连接AO并延长到E,连接BE.设AE=2R,则
    ∠ABE=90°,∠AEB=∠ACB;
    ∵AD⊥BC于D点,AC=5,DC=3,
    ∴∠ADC=90°,
    ∴AD=,

    在Rt△ABE与Rt△ADC中,
    ∠ABE=∠ADC=90°,∠AEB=∠ACB,
    ∴Rt△ABE∽Rt△ADC,
    ∴,
    即2R= = ;
    ∴⊙O的直径等于.
    故答案选:A.
    【点睛】
    本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.
    7、B
    【解析】
    试题分析:A.不是中心对称图形,故此选项不合题意;
    B.是中心对称图形,故此选项符合题意;
    C.不是中心对称图形,故此选项不符合题意;
    D.不是中心对称图形,故此选项不合题意;
    故选B.
    考点:中心对称图形.
    8、D
    【解析】
    先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.
    【详解】
    由题意可求出∠A=30°,AB=2BC=4, 由勾股定理得AC==2,
    AB=4>3, AC=2>3,点B、点C都在⊙A外.
    故答案选D.
    【点睛】
    本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.
    9、D
    【解析】
    将各选项的点逐一代入即可判断.
    【详解】
    解:当x=1时,y=-1,故点不在二次函数的图象;
    当x=2时,y=-4,故点和点不在二次函数的图象;
    当x=-2时,y=-4,故点在二次函数的图象;
    故答案为:D.
    【点睛】
    本题考查了判断一个点是否在二次函数图象上,解题的关键是将点代入函数解析式.
    10、B
    【解析】
    根据二次根式有意义的条件即可求出的范围.
    【详解】
    由题意可知: ,
    解得:,
    故选:.
    【点睛】
    考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
    11、C
    【解析】
    解:球是主视图是圆,圆是中心对称图形,故选C.
    12、A
    【解析】
    分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
    详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
    则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
    故选A.
    点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    过点A作AD⊥l1于D,过点B作BE⊥l1于E,根据同角的余角相等求出∠CAD=∠BCE,然后利用“角角边”证明△ACD和△CBE全等,根据全等三角形对应边相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用锐角的正弦等于对边比斜边列式计算即可得解.
    【详解】
    如图,过点A作AD⊥l1于D,过点B作BE⊥l1于E,设l1,l2,l3间的距离为1,
    ∵∠CAD+∠ACD=90°,
    ∠BCE+∠ACD=90°,
    ∴∠CAD=∠BCE,
    在等腰直角△ABC中,AC=BC,
    在△ACD和△CBE中,

    ∴△ACD≌△CBE(AAS),
    ∴CD=BE=1,
    ∴AD=2,
    ∴AC=,
    ∴AB=AC=,
    ∴sinα=,
    故答案为.
    【点睛】
    本题考查了全等三角形的判定与性质,等腰直角三角形的性质,锐角三角函数的定义,正确添加辅助线构造出全等三角形是解题的关键.
    14、ab(2a+1)(2a-1)
    【解析】
    先提取公因式再用公式法进行因式分解即可.
    【详解】
    4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)
    【点睛】
    此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.
    15、4
    【解析】
    根据二次函数的对称性求出点A的坐标,从而得出BC的长度,根据点C的坐标得出三角形的高线,从而得出答案.
    【详解】
    ∵二次函数的对称轴为直线x=2, ∴点A的坐标为(4,0),∵点C的坐标为(0,-2),
    ∴点B的坐标为(4,-2), ∴BC=4,则.
    【点睛】
    本题主要考查的是二次函数的对称性,属于基础题型.理解二次函数的轴对称性是解决这个问题的关键.
    16、4cm.
    【解析】
    由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.
    【详解】
    由题意知OD⊥AB,交AB于点E,
    ∵AB=16cm,
    ∴BC=AB=×16=8cm,
    在Rt△OBE中,
    ∵OB=10cm,BC=8cm,
    ∴OC=(cm),
    ∴CD=OD-OC=10-6=4(cm)
    故答案为4cm.
    【点睛】
    本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.
    17、.
    【解析】
    由AE=3EC,△ADE的面积为3,可知△ADC的面积为4,再根据点D为OB的中点,得到△ADC的面积为梯形BOCA面积的一半,即梯形BOCA的面积为8,设A (x,),从而
    表示出梯形BOCA的面积关于k的等式,求解即可.
    【详解】
    如图,连接DC,
    ∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1.
    ∴△ADC的面积为4.
    ∵点A在双曲线y=的第一象限的那一支上,
    ∴设A点坐标为 (x,).
    ∵OC=2AB,∴OC=2x.
    ∵点D为OB的中点,∴△ADC的面积为梯形BOCA面积的一半,∴梯形BOCA的面积为8.
    ∴梯形BOCA的面积=,解得.
    【点睛】
    反比例函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,同底三角形面积的计算,梯形中位线的性质.
    18、
    【解析】
    根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
    【详解】
    解:所有可能的结果如下表:
    由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
    所以其概率为挑选的两位教师恰好是一男一女的概率为=,
    故答案为.
    【点睛】
    本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、路灯高CD为5.1米.
    【解析】
    根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.
    【详解】
    设CD长为x米,
    ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,
    ∴MA∥CD∥BN,
    ∴EC=CD=x米,
    ∴△ABN∽△ACD,
    ∴=,即,
    解得:x=5.1.
    经检验,x=5.1是原方程的解,
    ∴路灯高CD为5.1米.
    【点睛】
    本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.
    20、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
    (2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
    试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
    (2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
    考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
    21、见解析
    【解析】
    连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=CF,可证得结论.
    【详解】
    证明:连接AF,
    ∵EF为AB的垂直平分线,
    ∴AF=BF,
    又AB=AC,∠BAC=120°,
    ∴∠B=∠C=∠BAF=30°,
    ∴∠FAC=90°,
    ∴AF=FC,
    ∴FC=2BF.
    【点睛】
    本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
    22、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
    【解析】
    (1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
    (2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
    【详解】
    (1)∵调查的人数较多,范围较大,
    ∴应当采用随机抽样调查,
    ∵到六年级每个班随机调查一定数量的同学相对比较全面,
    ∴丙同学的说法最合理.
    (2)①∵喜欢书画类的有20人,频率为0.20,
    ∴a=20÷0.20=100,
    b=15÷100=0.15;
    ②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
    ∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
    ③喜欢武术类的人数为:560×0.25=140人.
    【点睛】
    本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
    23、直角三角形斜边上的中线等于斜边的一半;1.
    【解析】
    根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.
    【详解】
    证明:如图,作Rt△ABC的斜边上的中线CD,
    则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半),
    ∵AC=AB,
    ∴AC=CD=AD 即△ACD是等边三角形,
    ∴∠A=1°,
    ∴∠B=90°﹣∠A=30°.
    【点睛】
    本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.
    24、(1)a+b的值为2;(2)a的值为3,b|a|的值为3;(1)b比a大27.1.
    【解析】
    (1)根据数轴即可得到a,b数值,即可得出结果.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2,即可求解.
    (1)点A不动,点B向右移动15.1个单位长,所以a=10,b=17.1,再b-a即可求解.
    【详解】
    (1)由图可知:a=10,b=2,
    ∴a+b=2
    故a+b的值为2.
    (2)由B点不动,点A向左移动1个单位长,
    可得a=3,b=2
    ∴b|a|=b+a=23=3
    故a的值为3,b|a|的值为3.
    (1)∵点A不动,点B向右移动15.1个单位长
    ∴a=10,b=17.1
    ∴ba=17.1(10)=27.1
    故b比a大27.1.
    【点睛】
    本题主要考查了数轴,关键在于数形结合思想.
    25、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
    (Ⅲ)P().
    【解析】
    (Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
    (Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
    (Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
    【详解】
    (Ⅰ)如图①中,作DH⊥BC于H,
    ∵△AOB是等边三角形,DC∥OA,
    ∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
    ∴△CDB是等边三角形,
    ∵CB=2,DH⊥CB,
    ∴CH=HB=,DH=3,
    ∴D(6﹣,3),
    ∵C′B=3,
    ∴CC′=2﹣3,
    ∴DD′=CC′=2﹣3,
    ∴D′(3+,3).
    (Ⅱ)当BB'=时,四边形MBND'是菱形,
    理由:如图②中,
    ∵△ABC是等边三角形,
    ∴∠ABO=60°,
    ∴∠ABB'=180°﹣∠ABO=120°,
    ∵BN是∠ACC'的角平分线,
    ∴∠NBB′'=∠ABB'=60°=∠D′C′B,
    ∴D'C'∥BN,∵AB∥B′D′
    ∴四边形MBND'是平行四边形,
    ∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
    ∴△MC′B'和△NBB'是等边三角形,
    ∴MC=CE',NC=CC',
    ∵B'C'=2,
    ∵四边形MBND'是菱形,
    ∴BN=BM,
    ∴BB'=B'C'=;
    (Ⅲ)如图连接BP,
    在△ABP中,由三角形三边关系得,AP<AB+BP,
    ∴当点A,B,P三点共线时,AP最大,
    如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
    ∴CP=3,
    ∴AP=6+3=9,
    在Rt△APD'中,由勾股定理得,AD'==2.
    此时P(,﹣).
    【点睛】
    此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
    26、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
    【解析】
    (1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
    ②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
    (2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
    【详解】
    (1)①如图1,

    反比例函数为,
    当时,,

    当时,



    设直线的解析式为,


    直线的解析式为;
    ②四边形是菱形,
    理由如下:如图2,
    由①知,,
    轴,

    点是线段的中点,

    当时,由得,,
    由得,,
    ,,


    四边形为平行四边形,

    四边形是菱形;
    (2)四边形能是正方形,
    理由:当四边形是正方形,记,的交点为,
    ,
    当时,,
    ,,

    ,,,


    .
    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
    27、(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元
    【解析】
    (1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.
    (2)先计算甲、乙合作需要的时间,然后计算费用即可.
    【详解】
    解:(1)设这项工程规定的时间是x天
    根据题意,得
    解得x=20
    经检验,x=20是原方程的根
    答:这项工程规定的时间是20天
    (2)合作完成所需时间(天)
    (6500+3500)×12=120000(元)
    答:该工程施工费用是120000元
    【点睛】
    本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.
    类别
    频数(人数)
    频率
    武术类

    0.25
    书画类
    20
    0.20
    棋牌类
    15
    b
    器乐类


    合计
    a
    1.00
    男1
    男2
    女1
    女2
    男1
    (男1,男2)
    (男1,女1)
    (男1,女2)
    男2
    (男2,男1)
    (男2,女1)
    (男2,女2)
    女1
    (女1,男1)
    (女1,男2)
    (女1,女2)
    女2
    (女2,男1)
    (女2,男2)
    (女2,女1)
    相关试卷

    2022年江苏省盐城市东台创新学校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年江苏省盐城市东台创新学校中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,济南市某天的气温,若,,则的值是,计算﹣的结果为等内容,欢迎下载使用。

    2022年江苏省盐城市东台实验中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年江苏省盐城市东台实验中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了下列解方程去分母正确的是等内容,欢迎下载使用。

    2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析: 这是一份2022届浙教版重点名校中考数学最后冲刺浓缩精华卷含解析,共23页。试卷主要包含了如图所示的几何体的俯视图是,如图,将△ABC绕点C等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map