江西省抚州市临川区重点中学2021-2022学年中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.若关于x的一元二次方程x2-2x-k=0没有实数根,则k的取值范围是( )
A.k>-1 B.k≥-1 C.k<-1 D.k≤-1
2.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
3.将一副三角板按如图方式摆放,∠1与∠2不一定互补的是( )
A. B. C. D.
4.下列实数中是无理数的是( )
A. B.π C. D.
5.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是( )
A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y3
6.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1 D.
7.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为( )
A. B. C.4 D.2+
8.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )
A. B. C. D.
9.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20 B.24 C.28 D.30
10.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )
A.70° B.50° C.40° D.35°
11.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
12.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.
14.圆锥的底面半径为3,母线长为5,该圆锥的侧面积为_______.
15.分解因式:8a3﹣8a2+2a=_____.
16.分解因式:2x3﹣4x2+2x=_____.
17.已知关于x的方程有两个不相等的实数根,则m的取值范围是______.
18.小红沿坡比为1:的斜坡上走了100米,则她实际上升了_____米.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.
(1)求证:DF=PG;
(2)若PC=1,求四边形PEFD的面积.
20.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)线段AC,AG,AH什么关系?请说明理由;
(3)设AE=m,
①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.
②请直接写出使△CGH是等腰三角形的m值.
21.(6分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
(1)求甲种树和乙种树的单价;
(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
22.(8分)已知P是的直径BA延长线上的一个动点,∠P的另一边交于点C、D,两点位于AB的上方,=6,OP=m,,如图所示.另一个半径为6的经过点C、D,圆心距.
(1)当m=6时,求线段CD的长;
(2)设圆心O1在直线上方,试用n的代数式表示m;
(3)△POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由.
23.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
24.(10分)矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
25.(10分)先化简,再求值:,其中a是方程a(a+1)=0的解.
26.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.
27.(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.
由题意得,解得
故选C.
考点:一元二次方程的根的判别式
点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.
2、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
3、D
【解析】
A选项:
∠1+∠2=360°-90°×2=180°;
B选项:
∵∠2+∠3=90°,∠3+∠4=90°,
∴∠2=∠4,
∵∠1+∠4=180°,
∴∠1+∠2=180°;
C选项:
∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,
∵∠1+∠EFC=180°,∴∠1+∠2=180°;
D选项:∠1和∠2不一定互补.
故选D.
点睛:本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.
4、B
【解析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
A、是分数,属于有理数;
B、π是无理数;
C、=3,是整数,属于有理数;
D、-是分数,属于有理数;
故选B.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
5、A
【解析】
作出反比例函数的图象(如图),即可作出判断:
∵-3<1,
∴反比例函数的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.
∴当x1<x2<1<x3时,y3<y1<y2.故选A.
6、C
【解析】
作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=AM=,再根据角平分线性质得BM=MH=,则AB=2+,于是利用正方形的性质得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.
【详解】
试题分析:作MH⊥AC于H,如图,
∵四边形ABCD为正方形,
∴∠MAH=45°,
∴△AMH为等腰直角三角形,
∴AH=MH=AM=×2=,
∵CM平分∠ACB,
∴BM=MH=,
∴AB=2+,
∴AC=AB=(2+)=2+2,
∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,
∵BD⊥AC,
∴ON∥MH,
∴△CON∽△CHM,
∴,即,
∴ON=1.
故选C.
【点睛】
本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.
7、B
【解析】
根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到.
【详解】
如图:
BC=AB=AC=1,
∠BCB′=120°,
∴B点从开始至结束所走过的路径长度为2×弧BB′=2×.故选B.
8、B
【解析】
将A、B、C、D分别展开,能和原图相对应的即为正确答案:
【详解】
A、展开得到,不能和原图相对应,故本选项错误;
B、展开得到,能和原图相对,故本选项正确;
C、展开得到,不能和原图相对应,故本选项错误;
D、展开得到,不能和原图相对应,故本选项错误.
故选B.
9、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
10、B
【解析】
分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
详解:∵OE是∠BOC的平分线,∠BOC=80°,
∴∠COE=∠BOC=×80°=40°,
∵OD⊥OE
∴∠DOE=90°,
∴∠DOC=∠DOE-∠COE=90°-40°=50°,
∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
故选B.
点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
11、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
12、C
【解析】
试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
【详解】
.故选C.
解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、①②③④
【解析】
①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
∵∠AMN=∠ABC=90°,
∴A,B,N,M四点共圆,
∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
∴∠ANM=∠NAM=45°,
∴AM=MN;
②由同角的余角相等知,∠HAM=∠PMN,
∴Rt△AHM≌Rt△MPN,
∴MP=AH=AC=BD;
③∵∠BAN+∠QAD=∠NAQ=45°,
∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
∴点U在NQ上,有BN+DQ=QU+UN=NQ;
④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
∴四边形SMWB是正方形,有MS=MW=BS=BW,
∴△AMS≌△NMW
∴AS=NW,
∴AB+BN=SB+BW=2BW,
∵BW:BM=1: ,
∴.
故答案为:①②③④
点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
14、15
【解析】
试题分析:利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.圆锥的侧面积=•2π•3•5=15π.
故答案为15π.
考点:圆锥的计算.
15、2a(2a﹣1)2
【解析】
提取2a,再将剩下的4a2-4a+1用完全平方和公式配出(2a﹣1)2,即可得出答案.
【详解】
原式=2a(4a2-4a+1)=2a(2a﹣1)2.
【点睛】
本题考查了因式分解,仔细观察题目并提取公因式是解决本题的关键.
16、2x(x-1)2
【解析】
2x3﹣4x2+2x=
17、
【解析】
试题分析:若一元二次方程有两个不相等的实数根,则根的判别式△=b2﹣4ac>0,建立关于m的不等式,解不等式即可求出m的取值范围. ∵关于x的方程x2﹣6x+m=0有两个不相等的实数根,
∴△=b2﹣4ac=(﹣6)2﹣4m=36﹣4m>0, 解得:m<1.
考点:根的判别式.
18、50
【解析】
根据题意设铅直距离为x,则水平距离为,根据勾股定理求出x的值,即可得到结果.
【详解】
解:设铅直距离为x,则水平距离为,
根据题意得:,
解得:(负值舍去),
则她实际上升了50米,
故答案为:50
【点睛】
本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)1.
【解析】
作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等
(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出
【详解】
解:(1)证明:∵四边形ABCD为正方形,
∴AD=AB,
∵四边形ABPM为矩形,
∴AB=PM,
∴AD=PM,
∵DF⊥PG,
∴∠DHG=90°,
∴∠GDH+∠DGH=90°,
∵∠MGP+∠MPG=90°,
∴∠GDH=∠MPG,
在△ADF和△MPG中,
∴△ADF≌△MPG(ASA),
∴DF=PG;
(2)作PM⊥DG于M,如图,
∵PD=PG,
∴MG=MD,
∵四边形ABCD为矩形,
∴PCDM为矩形,
∴PC=MD,
∴DG=2PC=2;
∵△ADF≌△MPG(ASA),
∴DF=PG,
而PD=PG,
∴DF=PD,
∵线段PG绕点P逆时针旋转90°得到线段PE,
∴∠EPG=90°,PE=PG,
∴PE=PD=DF,
而DF⊥PG,
∴DF∥PE,
即DF∥PE,且DF=PE,
∴四边形PEFD为平行四边形,
在Rt△PCD中,PC=1,CD=3,
∴PD==,
∴DF=PG=PD=,
∵四边形CDMP是矩形,
∴PM=CD=3,MD=PC=1,
∵PD=PG,PM⊥AD,
∴MG=MD=1,DG=2,
∵∠GDH=∠MPG,∠DHG=∠PMG=90°,
∴△DHG∽△PMG,
∴,
∴GH==,
∴PH=PG﹣GH=﹣=,
∴四边形PEFD的面积=DF•PH=×=1.
【点睛】
本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
20、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4..
【解析】
(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;
(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;
(3)①△AGH的面积不变.理由三角形的面积公式计算即可;
②分三种情形分别求解即可解决问题.
【详解】
(1)∵四边形ABCD是正方形,
∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,
∴AC=,
∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,
∴∠AHC=∠ACG.
故答案为=.
(2)结论:AC2=AG•AH.
理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,
∴△AHC∽△ACG,
∴,
∴AC2=AG•AH.
(3)①△AGH的面积不变.
理由:∵S△AGH=•AH•AG=AC2=×(4)2=1.
∴△AGH的面积为1.
②如图1中,当GC=GH时,易证△AHG≌△BGC,
可得AG=BC=4,AH=BG=8,
∵BC∥AH,
∴,
∴AE=AB=.
如图2中,当CH=HG时,
易证AH=BC=4,
∵BC∥AH,
∴=1,
∴AE=BE=2.
如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.
在BC上取一点M,使得BM=BE,
∴∠BME=∠BEM=43°,
∵∠BME=∠MCE+∠MEC,
∴∠MCE=∠MEC=22.3°,
∴CM=EM,设BM=BE=m,则CM=EMm,
∴m+m=4,
∴m=4(﹣1),
∴AE=4﹣4(﹣1)=8﹣4,
综上所述,满足条件的m的值为或2或8﹣4.
【点睛】
本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.
21、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.
【解析】
(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.
【详解】
解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,
根据题意得:
,
解得:
答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.
(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,
根据题意得:
解得:
∵a为整数,
∴a≥1.
∵甲种树的单价比乙种树的单价贵,
∴当购买1棵甲种树、133棵乙种树时,购买费用最低.
【点睛】
一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.
22、 (1)CD=;(2)m= ;(3) n的值为或
【解析】
分析:(1)过点作⊥,垂足为点,连接.解Rt△,得到的长.由勾股定理得的长,再由垂径定理即可得到结论;
(2)解Rt△,得到和Rt△中,由勾股定理即可得到结论;
(3)△成为等腰三角形可分以下几种情况讨论:① 当圆心、在弦异侧时,分和.②当圆心、在弦同侧时,同理可得结论.
详解:(1)过点作⊥,垂足为点,连接.
在Rt△,∴.
∵=6,∴.
由勾股定理得: .
∵⊥,∴.
(2)在Rt△,∴.
在Rt△中,.
在Rt△中,.
可得: ,解得.
(3)△成为等腰三角形可分以下几种情况:
① 当圆心、在弦异侧时
i),即,由,解得.
即圆心距等于、的半径的和,就有、外切不合题意舍去.
ii),由 ,
解得:,即 ,解得.
②当圆心、在弦同侧时,同理可得: .
∵是钝角,∴只能是,即,解得.
综上所述:n的值为或.
点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.
23、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
【解析】
(1)只要证明AB=CD,AF=CD即可解决问题;
(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BE∥CD,AB=CD,
∴∠AFC=∠DCG,
∵GA=GD,∠AGF=∠CGD,
∴△AGF≌△DGC,
∴AF=CD,
∴AB=CF.
(2)解:结论:四边形ACDF是矩形.
理由:∵AF=CD,AF∥CD,
∴四边形ACDF是平行四边形,
∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD=120°,
∴∠FAG=60°,
∵AB=AG=AF,
∴△AFG是等边三角形,
∴AG=GF,
∵△AGF≌△DGC,
∴FG=CG,∵AG=GD,
∴AD=CF,
∴四边形ACDF是矩形.
【点睛】
本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
24、(1)①证明见解析;②10;(2)线段EF的长度不变,它的长度为2.
.
【解析】
试题分析:(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=AD=4,设OP=x,则CO=8﹣x,由勾股定理得列方程,求出x,最后根据CD=AB=2OP即可求出边CD的长;
(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,由(1)中的结论求出PB的长,最后代入EF=PB即可得出线段EF的长度不变.
试题解析:(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴=,∴CP=AD=4,设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得 :,解得:x=5,∴CD=AB=AP=2OP=10,∴边CD的长为10;
(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB==,∴EF=PB=,∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为.
考点:翻折变换(折叠问题);矩形的性质;相似形综合题.
25、
【解析】
根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.
【详解】
解:原式=
=
∵a(a+1)=0,解得:a=0或-1,
由题可知分式有意义,分母不等于0,
∴a=-1,
将a=-1代入得,
原式=
【点睛】
本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.
26、(1);(2).
【解析】
(1)直接根据概率公式求解;
(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.
【详解】
(1)正数为2,所以该球上标记的数字为正数的概率为;
(2)画树状图为:
共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x,y)位于第二象限的概率==.
【点睛】
本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
27、(1)不可能事件;(2).
【解析】
试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可.
试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;
(2)树状图法
即小张同学得到猪肉包和油饼的概率为.
考点:列表法与树状图法.
2024年江西省抚州市临川区中考一模数学试题(原卷版+解析版): 这是一份2024年江西省抚州市临川区中考一模数学试题(原卷版+解析版),文件包含2024年江西省抚州市临川区中考一模数学试题原卷版docx、2024年江西省抚州市临川区中考一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
2024年江西省抚州市临川区中考一模数学试题(含解析): 这是一份2024年江西省抚州市临川区中考一模数学试题(含解析),共27页。试卷主要包含了选择题每小题只有一个正确选项.,填空题,八年级学生成绩统计表等内容,欢迎下载使用。
江西省抚州市临川区重点中学2021-2022学年中考数学四模试卷含解析: 这是一份江西省抚州市临川区重点中学2021-2022学年中考数学四模试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,下列各式计算正确的是,一元二次方程2=1的解为,二次函数y=ax2+bx+c,拒绝“餐桌浪费”,刻不容缓等内容,欢迎下载使用。