江西省南昌市2021-2022学年中考数学押题卷含解析
展开
这是一份江西省南昌市2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列各式计算正确的是,点A,下列图形中,不是轴对称图形的是,如图所示的几何体的主视图是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题(共10小题,每小题3分,共30分)1.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是( ).A. B. C. D.2.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣23.圆锥的底面半径为2,母线长为4,则它的侧面积为( )A.8π B.16π C.4π D.4π4.下列各式计算正确的是( )A.a4•a3=a12 B.3a•4a=12a C.(a3)4=a12 D.a12÷a3=a45.点A(a,3)与点B(4,b)关于y轴对称,则(a+b)2017的值为( )A.0 B.﹣1 C.1 D.720176.如图,在中,、分别为、边上的点,,与相交于点,则下列结论一定正确的是( )A. B.C. D.7.下列图形中,不是轴对称图形的是( )A. B. C. D.8.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).A. B. C. D.9.如图所示的几何体的主视图是( )A. B. C. D.10.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为( )A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.12.不等式组的整数解是_____.13.如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:_____.14.因式分解:9x﹣x2=_____.15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.B、按照小明的要求,小亮所搭几何体的表面积最小为__________.16.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.(1)求二次函数的表达式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.18.(8分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.(1)试探究线段AE与CG的关系,并说明理由.(2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.②当△CDE为等腰三角形时,求CG的长.19.(8分)雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.20.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.(8分)先化简,再求值:(),其中=22.(10分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9, CE=12, 求BF的长.23.(12分)如图,已知∠AOB与点M、N求作一点P,使点P到边OA、OB的距离相等,且PM=PN(保留作图痕迹,不写作法)24.丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89③A、B两班学生测试成绩的平均数、中位数、方差如下: 平均数中位数方差A班80.6m96.9B班80.8n153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).
参考答案 一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.2、C【解析】
根据反比例函数与一次函数在同一坐标系内的图象可直接解答.【详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
由图象可得:-2<x<0或x>1,
故选C.【点睛】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.3、A【解析】
解:底面半径为2,底面周长=4π,侧面积=×4π×4=8π,故选A.4、C【解析】
根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.5、B【解析】
根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【详解】解:由题意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故选B.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的纵坐标相等,横坐标互为相反数得出a,b是解题关键.6、A【解析】
根据平行线分线段成比例定理逐项分析即可.【详解】A.∵,∴,,∴,故A正确;B. ∵,∴,故B不正确;C. ∵,∴ ,故C不正确;D. ∵,∴,故D不正确;故选A.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.7、A【解析】
观察四个选项图形,根据轴对称图形的概念即可得出结论.【详解】根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.故选A.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.8、B【解析】
如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.【详解】如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B【点睛】本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.9、C【解析】
主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.10、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键. 二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.12、﹣1、0、1【解析】
求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】,解不等式得:,解不等式得:,不等式组的解集为,不等式组的整数解为-1,0,1.故答案为:-1,0,1.【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.13、(4,2).【解析】
利用图象旋转和平移可以得到结果.【详解】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为(4,2).【点睛】平移和旋转:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫做图形的平移运动,简称平移.定义在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角度叫做旋转角.14、x(9﹣x)【解析】试题解析: 故答案为 点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.15、A, 18, 1 【解析】
A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
B、分别得到前后面,上下面,左右面的面积,相加即可求解.【详解】A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
∴该长方体需要小立方体4×32=36个,
∵小明用18个边长为1的小正方体搭成了一个几何体,
∴小亮至少还需36-18=18个小立方体,
B、表面积为:2×(8+8+7)=1.
故答案是:A,18,1.【点睛】考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.16、60°【解析】
先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等. 三、解答题(共8题,共72分)17、 (1) y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.【解析】
(1)将代入,列方程组求出b、c的值即可;(2)连接PD,作轴交于点G,求出直线的解析式为,设,则,,,当时,S有最大值;(3)过点P作轴,设,则,,根据,列出关于x的方程,解之即可.【详解】解:(1)将、代入, ,∴二次函数的表达式;(2)连接,作轴交于点,如图所示.在中,令y=0,得,∴直线AD的解析式为.设,则,,∴.,∴当时,S有最大值.(3)过点P作轴,设,则,,,即 ,当点P在y轴右侧时,,,或,(舍去)或(舍去),当点P在y轴左侧时,x<0,,或,(舍去),或(舍去), 综上所述,存在点F,使与互余点P的横坐标为或或或.【点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.18、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;理由见解析;②当△CDE为等腰三角形时,CG的长为或或.【解析】试题分析:证明≌即可得出结论.①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.分成三种情况讨论即可.试题解析:(1) 理由是:如图1,∵四边形EFGD是正方形,∴ ∵四边形ABCD是正方形,∴ ∴ ∴≌ ∴ ∵ ∴ ∴ 即 (2)①位置关系保持不变,数量关系变为 理由是:如图2,连接EG、DF交于点O,连接OC,∵四边形EFGD是矩形,∴ Rt中,OG=OF,Rt中, ∴ ∴D、E、F、C、G在以点O为圆心的圆上,∵ ∴DF为的直径,∵ ∴EG也是的直径,∴∠ECG=90°,即 ∴ ∵ ∴ ∵ ∴ ∴ ②由①知:∴设 分三种情况:(i)当时,如图3,过E作于H,则EH∥AD,∴ ∴ 由勾股定理得: ∴ (ii)当时,如图1,过D作于H, ∵ ∴ ∴ ∴ ∴ ∴ (iii)当时,如图5,∴ ∴ 综上所述,当为等腰三角形时,CG的长为或或.点睛:两组角对应,两三角形相似.19、1米.【解析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x米,根据题意得: 解得,x=1.检验:当x=1时,2x≠0,∴x=1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根.20、(1)见解析(2)见解析【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF∥BC, ∴∠AFE=∠DBE.∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四边形ADCF是菱形,证明如下:∵AF∥BC,AF=DC,∴四边形ADCF是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形21、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案.详解:原式= 将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型.解决这个问题的关键就是就是将括号里面的分式进行化成同分母.22、(1)证明见解析;(2)1.【解析】试题分析:(1)根据垂直的定义可得∠CEB=90°,然后根据角平分线的性质和等腰三角形的性质,判断出∠1=∠D,从而根据平行线的判定得到CE∥BD,根据平行线的性质得∠DBA=∠CEB,由此可根据切线的判定得证结果;(2)连接AC,由射影定理可得,进而求得EB的长,再由勾股定理求得BD=BC的长,然后由“两角对应相等的两三角形相似”的性质证得△EFC∽△BFD,再由相似三角形的性质得出结果.试题解析:(1)证明:∵,∴.∵CD平分,BC=BD,∴,.∴.∴∥.∴.∵AB是⊙O的直径,∴BD是⊙O的切线.(2)连接AC,∵AB是⊙O直径,∴.∵,可得.∴在Rt△CEB中,∠CEB=90°,由勾股定理得 ∴.∵,∠EFC =∠BFD,∴△EFC∽△BFD.∴.∴.∴BF=1.考点:切线的判定,相似三角形,勾股定理23、见解析【解析】
作∠AOB的角平分线和线段MN的垂直平分线,它们的交点即是要求作的点P.【详解】解:①作∠AOB的平分线OE,②作线段MN的垂直平分线GH,GH交OE于点P.点P即为所求.【点睛】本题考查了角平分线和线段垂直平分线的尺规作法,熟练掌握角平分线和线段垂直平分线的的作图步骤是解答本题的关键.24、(1)见解析;(2)m=81,n=85;(3)略.【解析】
(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m==81,n==85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.
相关试卷
这是一份江西省上饶二中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列说法,下列运算正确的是,规定等内容,欢迎下载使用。
这是一份江西省南昌石埠初级中学2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了下列运算结果正确的是等内容,欢迎下载使用。
这是一份2022年江西省南昌市进贤县中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。