南京市联合体重点中学2021-2022学年中考数学猜题卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)
A.2×1011 B.2×1012 C.2.0×1011 D.2.0×1010
2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
A.CB=CD B.∠BCA=∠DCA
C.∠BAC=∠DAC D.∠B=∠D=90°
3.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.
A.6055 B.6056 C.6057 D.6058
4.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )
A. B. C. D.
5.下列计算正确的是( )
A.a3•a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a
6.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
A.65° B.60°
C.55° D.45°
7.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
8.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )
A.1 B.2 C.3 D.4
9.下列事件中为必然事件的是( )
A.打开电视机,正在播放茂名新闻 B.早晨的太阳从东方升起
C.随机掷一枚硬币,落地后正面朝上 D.下雨后,天空出现彩虹
10.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
二、填空题(共7小题,每小题3分,满分21分)
11.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
12.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.
13.计算(+)(-)的结果等于________.
14.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.
15.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).
16.抛物线y=2x2+4x﹣2的顶点坐标是_______________.
17.因式分解:y3﹣16y=_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,AB是⊙O的直径,点C是弧AB的中点,点D是⊙O外一点,AD=AB,AD交⊙O于F,BD交⊙O于E,连接CE交AB于G.
(1)证明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度数;
(3)若EF=2,tanB=3,求CE•CG的值.
19.(5分)如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
20.(8分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.
(1)求线段 CD 的长;(2)求△ADE 的面积.
21.(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.
22.(10分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).
(1)求抛物线F的解析式;
(1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
(3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
①判断△AA′B的形状,并说明理由;
②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
23.(12分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
24.(14分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
2000亿元=2.0×1.
故选:C.
【点睛】
考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、B
【解析】
由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
【详解】
解:在△ABC和△ADC中
∵AB=AD,AC=AC,
∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
故选:B.
【点睛】
本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
3、D
【解析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论
【详解】
设第n个图形有an个〇(n为正整数),
观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,
∴an=1+3n(n为正整数),
∴a2019=1+3×2019=1.
故选:D.
【点睛】
此题考查规律型:图形的变化,解题关键在于找到规律
4、D
【解析】
试题分析:列举出所有情况,看取出的两个都是黄色球的情况数占总情况数的多少即可.
试题解析:画树状图如下:
共有12种情况,取出2个都是黄色的情况数有6种,所以概率为.
故选D.
考点:列表法与树状法.
5、D
【解析】
根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.
【详解】
解:A.x4•x4=x4+4=x8≠x16,故该选项错误;
B.(a3)2=a3×2=a6≠a5,故该选项错误;
C.(ab2)3=a3b6≠ab6,故该选项错误;
D.a+2a=(1+2)a=3a,故该选项正确;
故选D.
考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.
6、A
【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
【详解】
由题意可得:MN是AC的垂直平分线,
则AD=DC,故∠C=∠DAC,
∵∠C=30°,
∴∠DAC=30°,
∵∠B=55°,
∴∠BAC=95°,
∴∠BAD=∠BAC-∠CAD=65°,
故选A.
【点睛】
此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
7、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
8、B
【解析】
先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
【详解】
解:在Rt△ABO中,sin∠OAB===,
∴∠OAB=60°,
∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
∴∠CAB=30°,OC⊥AC,
∴∠OAC=60°﹣30°=30°,
在Rt△OAC中,OC=OA=1.
故选B.
【点睛】
本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
9、B
【解析】
分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:
A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;
B、早晨的太阳从东方升起,是必然事件,故本选项正确;
C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;
D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.
故选B.
10、B
【解析】
二次函数,
所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;
当x=2时,取得最大值,最大值为-3,选项B正确;
顶点坐标为(2,-3),选项C错误;
顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,
故答案选B.
考点:二次函数的性质.
二、填空题(共7小题,每小题3分,满分21分)
11、上升的
【解析】
∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
∴在y 轴右侧部分抛物线呈上升趋势.
故答案为:上升的.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
12、45
【解析】
试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.
∵AE=AC,
∴∠ACE=∠AEC=x+y,
∵BD=BC,
∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.
在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,
∴x+(90°-y)+(x+y)=180°,
解得x=45°,
∴∠DCE=45°.
考点:1.等腰三角形的性质;2.三角形内角和定理.
13、2
【解析】
利用平方差公式进行计算即可得.
【详解】
原式=
=5-3=2,
故答案为:2.
【点睛】
本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.
14、1
【解析】
根据弧长公式l=代入求解即可.
【详解】
解:∵,
∴.
故答案为1.
【点睛】
本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.
15、(a+b)2=a2+2ab+b2
【解析】
完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.
【详解】
解:
,
【点睛】
此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.
16、(﹣1,﹣1)
【解析】
利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.
【详解】
x=-=-1,
把x=-1代入得:y=2-1-2=-1.
则顶点的坐标是(-1,-1).
故答案是:(-1,-1).
【点睛】
本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.
17、y(y+4)(y﹣4)
【解析】
试题解析:原式
故答案为
点睛:提取公因式法和公式法相结合因式分解.
三、解答题(共7小题,满分69分)
18、(1)见解析;(2)70°;(3)1.
【解析】
(1)先根据等边对等角得出∠B=∠D,即可得出结论;
(2)先判断出∠DFE=∠B,进而得出∠D=∠DFE,即可求出∠D=70°,即可得出结论;
(3)先求出BE=EF=2,进而求AE=6,即可得出AB,进而求出AC,再判断出△ACG∽△ECA,即可得出结论.
【详解】
(1)∵AB=AD,
∴∠B=∠D,
∵∠B=∠C,
∴∠C=∠D;
(2)∵四边形ABEF是圆内接四边形,
∴∠DFE=∠B,
由(1)知,∠B=∠D,
∴∠D=∠DFE,
∵∠BEF=140°=∠D+∠DFE=2∠D,
∴∠D=70°,
由(1)知,∠C=∠D,
∴∠C=70°;
(3)如图,由(2)知,∠D=∠DFE,
∴EF=DE,
连接AE,OC,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴BE=DE,
∴BE=EF=2,
在Rt△ABE中,tanB==3,
∴AE=3BE=6,根据勾股定理得,AB=,
∴OA=OC=AB=,
∵点C是 的中点,
∴ ,
∴∠AOC=90°,
∴AC=OA=2,
∵,
∴∠CAG=∠CEA,
∵∠ACG=∠ECA,
∴△ACG∽△ECA,
∴,
∴CE•CG=AC2=1.
【点睛】
本题是几何综合题,涉及了圆的性质,圆周角定理,勾股定理,锐角三角函数,相似三角形的判定和性质,圆内接四边形的性质,等腰三角形的性质等,综合性较强,有一定的难度,熟练掌握和灵活运用相关知识是解题的关键.本题中求出BE=2也是解题的关键.
19、(1)作图见解析;.(2)作图见解析;(3)1.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=1.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
20、(1);(2).
【解析】
分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;
(2)根据三角形的面积公式计算.
详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.
∵,即CD=;
(2).
∵BD=2DE,∴.
点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
21、(1)y是x的一次函数,y=-30x+1(2)w=-30x2+780x-31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元
【解析】
(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.
(2)销售利润=每个许愿瓶的利润×销售量.
(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.
【详解】
解:(1)y是x的一次函数,设y=kx+b,
∵图象过点(10,300),(12,240),
∴,解得.∴y=-30x+1.
当x=14时,y=180;当x=16时,y=120,
∴点(14,180),(16,120)均在函数y=-30x+1图象上.
∴y与x之间的函数关系式为y=-30x+1.
(2)∵w=(x-6)(-30x+1)=-30x2+780x-31,
∴w与x之间的函数关系式为w=-30x2+780x-31.
(3)由题意得:6(-30x+1)≤900,解得x≥3.
w=-30x2+780x-31图象对称轴为:.
∵a=-30<0,∴抛物线开口向下,当x≥3时,w随x增大而减小.
∴当x=3时,w最大=4.
∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.
22、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
【解析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
【详解】
(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
∴,解得:,
∴抛物线F的解析式为y=x1+x.
(1)将y=x+m代入y=x1+x,得:x1=m,
解得:x1=﹣,x1=,
∴y1=﹣+m,y1=+m,
∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
(3)∵m=,
∴点A的坐标为(﹣,),点B的坐标为(,1).
∵点A′是点A关于原点O的对称点,
∴点A′的坐标为(,﹣).
①△AA′B为等边三角形,理由如下:
∵A(﹣,),B(,1),A′(,﹣),
∴AA′=,AB=,A′B=,
∴AA′=AB=A′B,
∴△AA′B为等边三角形.
②∵△AA′B为等边三角形,
∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
(i)当A′B为对角线时,有,
解得,
∴点P的坐标为(1,);
(ii)当AB为对角线时,有,
解得:,
∴点P的坐标为(﹣,);
(iii)当AA′为对角线时,有,
解得:,
∴点P的坐标为(﹣,﹣1).
综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
【点睛】
本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
23、(1);(2);(3)第一题.
【解析】
(1)由第一道单选题有3个选项,直接利用概率公式求解即可求得答案;
(2)画出树状图,再由树状图求得所有等可能的结果与小明顺利通关的情况,继而利用概率公式即可求得答案;
(3)由如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;即可求得答案.
【详解】
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率=;
故答案为;
(2)画树状图为:
共有9种等可能的结果数,其中两个都正确的结果数为1,所以小明顺利通关的概率为;
(3)建议小明在第一题使用“求助”.理由如下:
小明将“求助”留在第一题,
画树状图为:
小明将“求助”留在第一题使用,小明顺利通关的概率=,
因为>,
所以建议小明在第一题使用“求助”.
【点睛】
本题考查的是概率,熟练掌握树状图法和概率公式是解题的关键.
24、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
【解析】
过点A作AD⊥BC于点D,
在Rt△ADC中,
由得tanC=∴∠C=30°∴AD=AC=×240=120(米)
在Rt△ABD中,∠B=45°∴AB=AD=120(米)
120÷(240÷24)=120÷10=12(米/分钟)
答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A
天津市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份天津市重点中学2021-2022学年中考数学猜题卷含解析,共21页。
辽阳市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份辽阳市重点中学2021-2022学年中考数学猜题卷含解析,共26页。试卷主要包含了计算4×的结果等于等内容,欢迎下载使用。
丽水市重点中学2021-2022学年中考数学猜题卷含解析: 这是一份丽水市重点中学2021-2022学年中考数学猜题卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,下列运算正确的是,的倒数的绝对值是等内容,欢迎下载使用。