山东省广饶县重点中学2022年中考数学押题卷含解析
展开这是一份山东省广饶县重点中学2022年中考数学押题卷含解析,共15页。试卷主要包含了考生要认真填写考场号和座位序号,tan45º的值为,的绝对值是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.cos45°的值是( )
A. B. C. D.1
2.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为( )
A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣3
3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )
A. B. C. D.
4.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )
A. B. C. D.
5.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )
A.50 B.0.02 C.0.1 D.1
6.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是( )
A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2 D.y=﹣2(x﹣1)2
7.tan45º的值为( )
A. B.1 C. D.
8.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )
A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
9.的绝对值是( )
A.8 B.﹣8 C. D.﹣
10.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
A.5 B.6 C.7 D.9
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.
12.若a+b=5,ab=3,则a2+b2=_____.
13.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.
14.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.
15.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.
16.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
17.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.
三、解答题(共7小题,满分69分)
18.(10分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.
19.(5分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时.
(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值.
学员 | 培训时段 | 培训学时 | 培训总费用 |
小明 | 普通时段 | 20 | 6000元 |
高峰时段 | 5 | ||
节假日时段 | 15 | ||
小华 | 普通时段 | 30 | 5400元 |
高峰时段 | 2 | ||
节假日时段 | 8 |
(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时段培训了x学时,培训总费用为y元
①求y与x之间的函数关系式,并确定自变量x的取值范围;
②小陈如何选择培训时段,才能使得本次培训的总费用最低?
20.(8分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
21.(10分)某街道需要铺设管线的总长为9000,计划由甲队施工,每天完成150.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度与甲队工作时间(天)之间的函数关系图象.
(1)直接写出点的坐标;
(2)求线段所对应的函数解析式,并写出自变量的取值范围;
(3)直接写出乙队工作25天后剩余管线的长度.
22.(10分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
23.(12分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.
24.(14分)如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形.
(1)求证:四边形ABCD是菱形.
(2)若AC=8,AB=5,求ED的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.
【详解】
cos45°= .
故选:C.
【点睛】
本题考查特殊角的三角函数值.
2、D
【解析】
先得到抛物线y=x2的顶点坐标(0,0),再根据点平移的规律得到点(0,0)平移后的对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)先向左平移2个单位,再向下平移1个单位得到对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选:D.
【点睛】
本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.
3、B
【解析】
由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.
故选B.
4、A
【解析】
解:可把A、B、C、D选项折叠,能够复原(1)图的只有A.
故选A.
5、D
【解析】
所有小组频数之和等于数据总数,所有频率相加等于1.
6、A
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是:y=﹣2x2+1.
故选A.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
7、B
【解析】
解:根据特殊角的三角函数值可得tan45º=1,
故选B.
【点睛】
本题考查特殊角的三角函数值.
8、D
【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
【详解】
28600=2.86×1.故选D.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键
9、C
【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
【详解】
解:.
故选
【点睛】
此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.
10、B
【解析】
直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
【详解】
∵一组数据1,7,x,9,5的平均数是2x,
∴,
解得:,
则从大到小排列为:3,5,1,7,9,
故这组数据的中位数为:1.
故选B.
【点睛】
此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、110
【解析】
试题解析:解:∵∠C=40°,CA=CB,
∴∠A=∠ABC=70°,
∴∠ABD=∠A+∠C=110°.
考点:等腰三角形的性质、三角形外角的性质
点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.
12、1
【解析】
试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.
解:∵a+b=5,
∴a2+2ab+b2=25,
∵ab=3,
∴a2+b2=1.
故答案为1.
考点:完全平方公式.
13、6
【解析】
过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.
【详解】
如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,
∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,
∴∠DAM=∠BAN.
∵∠DMA=∠N=90°,AB=AD,
∴△DAM≌△BAN,
∴AM=AN,
∴四边形AMCN为正方形,
∴S四边形ABCD=S四边形AMCN=AC2,
∴AC=6,
∴BD⊥AC时BD最小,且最小值为6.
故答案为:6.
【点睛】
本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.
14、-1.
【解析】
设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.
【详解】
设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);
把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,
①代入②得:am1+1m=m,
解得:a=-,
则ac=-1m=-1.
考点:二次函数综合题.
15、.
【解析】
依据点A(1,2)在x轴上的正投影为点A′,即可得到A'O=1,AA'=2,AO=,进而得出cos∠AOA′的值.
【详解】
如图所示,点A(1,2)在x轴上的正投影为点A′,
∴A'O=1,AA'=2,
∴AO=,
∴cos∠AOA′=,
故答案为:.
【点睛】
本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
16、1
【解析】
根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
【详解】
∵a、b是方程x2-2x-1=0的两个根,
∴a2-2a=1,a+b=2,
∴a2-a+b=a2-2a+(a+b)=1+2=1.
故答案为1.
【点睛】
本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
17、4
【解析】
∵AE=ED,AE+ED=AD,∴ED=AD,
∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,
∴△DEF∽△BCF,
∴DF:BF=DE:BC=2:3,
∵DF+BF=BD=10,
∴DF=4,
故答案为4.
三、解答题(共7小题,满分69分)
18、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).
【解析】
分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.
详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,
则点A(﹣2,0),B(0,2),
把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.
∴该抛物线的解析式为y=﹣x2﹣x+2;
(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,
则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;
(3)如图,作PE⊥x轴于点E,交AB于点D,
在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,
在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,
设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,
即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).
点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.
19、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【解析】
(1)根据小明和小华的培训结算表列出关于a、b的二元一次方程组,解方程即可求解;
(2)①根据培训总费用=普通时段培训费用+高峰时段和节假日时段培训费用列出y与x之间的函数关系式,进而确定自变量x的取值范围;
②根据一次函数的性质结合自变量的取值范围即可求解.
【详解】
(1)由题意,得,
解得,
故a,b的值分别是120,180;
(2)①由题意,得y=120x+180(40-x),
化简得y=-60x+7200,
∵普通时段的培训学时不会超过其他两个时段总学时的,
∴x≤(40-x),
解得x≤,
又x≥0,
∴0≤x≤;
②∵y=-60x+7200,
k=-60<0,
∴y随x的增大而减小,
∴x取最大值时,y有最小值,
∵0≤x≤;
∴x=时,y有最小值,此时y最小=-60×+7200=6400(元).
【点睛】
本题考查了一次函数的应用,二元一次方程组的应用,理解题意得出数量关系是解题的关键.
20、(1)2400,60;(2)见解析;(3)500
【解析】
整体分析:
(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
A品牌所占的圆心角:×360°=60°;
故答案为2400,60;
(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
补全统计图如图:
(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
21、(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.
【解析】
(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.
【详解】
(1)9000-150×10=7500.
∴点B的坐标为(10,7500)
(2)设直线BC的解析式为y=kx+b,依题意,得:
解得:
∴直线BC的解析式为y=-250x+10000,
∵乙队是10天之后加入,40天完成,
∴自变量x的取值范围为10≤x≤40.
(3)依题意,当x=35时,y=-250×35+10000=1250.
∴乙队工作25天后剩余管线的长度是1250米.
【点睛】
本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.
22、
【解析】
分析:按照实数的运算顺序进行运算即可.
详解:原式
点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.
23、证明见解析.
【解析】
想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.
【详解】
解:∵AF=DC,
∴AF+FC=FC+CD,
∴AC=FD,
在△ABC 和△DEF 中,
∴△ABC≌△DEF(AAS)
∴BC=EF.
【点睛】
本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
24、(1)证明见解析(2)4-3
【解析】
试题分析:(1)根据等边三角形的性质,可得EO⊥AC,即BD⊥AC,根据平行四边形的对角线互相垂直可证菱形,(2) 根据平行四边形的对角线互相平分可得AO=CO,BO=DO,再根据△EAC是等边三角形可以判定EO⊥AC,并求出EA的长度,然后在Rt△ABO中,利用勾股定理列式求出BO的长度,即DO的长度,在Rt△AOE中,根据勾股定理列式求出EO的长度,再根据ED=EO-DO计算即可得解.
试题解析:(1) ∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,
∵△EAC是等边三角形, EO是AC边上中线,
∴EO⊥AC,即BD⊥AC,
∴平行四边形ABCD是是菱形.
(2) ∵平行四边形ABCD是是菱形,
∴AO=CO==4,DO=BO,
∵△EAC是等边三角形,∴EA=AC=8,EO⊥AC,
在Rt△ABO中,由勾股定理可得:BO=3,
∴DO=BO=3,
在Rt△EAO中,由勾股定理可得:EO=4
∴ED=EO-DO=4-3.
相关试卷
这是一份2022年山东省广饶县重点中学中考数学模试卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,计算6m3÷的结果是等内容,欢迎下载使用。
这是一份2022年德宏市重点中学中考押题数学预测卷含解析,共23页。试卷主要包含了下列运算正确的是,计算4×的结果等于,下列命题是真命题的是,cs30°=等内容,欢迎下载使用。
这是一份2022届山东省宁阳十一中重点中学中考数学押题卷含解析,共18页。试卷主要包含了答题时请按要求用笔,计算的结果为等内容,欢迎下载使用。