


内蒙古自治区呼和浩特市回民区2022年中考数学全真模拟试题含解析
展开
这是一份内蒙古自治区呼和浩特市回民区2022年中考数学全真模拟试题含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号,的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(共10小题,每小题3分,共30分)1.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有( )个〇.A.6055 B.6056 C.6057 D.60582.计算±的值为( )A.±3 B.±9 C.3 D.93.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 动时间(小时)33.544.5人数1121A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.84.一元二次方程3x2-6x+4=0根的情况是A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根 D.没有实数根5.一个几何体的三视图如图所示,则该几何体的形状可能是( )A. B.C. D.6.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )A.①②③ B.①②④ C.①③④ D.①②③④7.的值为( )A. B.- C.9 D.-98.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨9.按如图所示的方法折纸,下面结论正确的个数( )①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1 个 B.2 个 C.1 个 D.4 个10.在Rt△ABC中,∠C=90°,那么sin∠B等于( )A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.2018年贵州省公务员、人民警察、基层培养项目和选调生报名人数约40.2万人,40.2万人用科学记数法表示为_____人.12.在矩形ABCD中,AB=4,BC=9,点E是AD边上一动点,将边AB沿BE折叠,点A的对应点为A′,若点A′到矩形较长两对边的距离之比为1:3,则AE的长为_____.13.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.14.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)15.已知|x|=3,y2=16,xy<0,则x﹣y=_____.16.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.三、解答题(共8题,共72分)17.(8分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.18.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?19.(8分)如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.(1)连接CF,求证:四边形AECF是菱形;(2)若E为BC中点,BC=26,tan∠B=,求EF的长.20.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1800510250210150120人数113532(1)求这15位营销人员该月销售量的平均数、中位数和众数;假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.21.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示): ;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.22.(10分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.23.(12分)先化简,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.24.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.
参考答案 一、选择题(共10小题,每小题3分,共30分)1、D【解析】
设第n个图形有a个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a =1+3n(n为正整数)",再代入a=2019即可得出结论【详解】设第n个图形有an个〇(n为正整数),观察图形,可知:a1=1+3×1,a2=1+3×2,a3=1+3×3,a4=1+3×4,…,∴an=1+3n(n为正整数),∴a2019=1+3×2019=1.故选:D.【点睛】此题考查规律型:图形的变化,解题关键在于找到规律2、B【解析】
∵(±9)2=81,∴±±9.故选B.3、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1.故选C.4、D【解析】
根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.5、D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频6、D【解析】
根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.7、A【解析】【分析】根据绝对值的意义进行求解即可得.【详解】表示的是的绝对值,数轴上表示的点到原点的距离是,即的绝对值是,所以的值为 ,故选A.【点睛】本题考查了绝对值的意义,熟练掌握绝对值的意义是解题的关键.8、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.9、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.10、A【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.【详解】根据在△ABC中,∠C=90°,那么sinB= =,故答案选A.【点睛】本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义. 二、填空题(本大题共6个小题,每小题3分,共18分)11、4.02×1.【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:40.2万=4.02×1,故答案为:4.02×1.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、或【解析】
由,,得,所以.再以①和②两种情况分类讨论即可得出答案.【详解】因为翻折,所以,,过作,交AD于F,交BC于G,根据题意,,.若点在矩形ABCD的内部时,如图则GF=AB=4,由可知.又..又....若则,..则...若则,..则 ...故答案或.【点睛】本题主要考查了翻折问题和相似三角形判定,灵活运用是关键错因分析:难题,失分原因有3点:(1)不能灵活运用矩形和折叠与动点问题叠的性质;(2)没有分情况讨论,由于点A′A′到矩形较长两对边的距离之比为1:3,需要分A′M:A′N=1:3,A′M:A′N=1:3和A′M:A′N=3:1,A′M:A′N=3:1这两种情况;(3)不能根据相似三角形对应边成比例求出三角形的边长.13、圆形【解析】
根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.【详解】围成的圆形场地的面积较大.理由如下:设正方形的边长为a,圆的半径为R,∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,∴R=,即所围成的圆的半径为,∴正方形的面积S1=a2=144,圆的面积S2=π×()2=,∵144<,∴围成的圆形场地的面积较大.故答案为:圆形.【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.14、①②④【解析】
①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=,BP=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=,则PQ=,∴.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=,∴S△DPQ=DP•QH=××=.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,则有,解得:DN=.由DQ=1,得cos∠ADQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.15、±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.16、6【解析】
过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键. 三、解答题(共8题,共72分)17、(1)200;(2)答案见解析;(3).【解析】
(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名) B组百分比:70÷200×100%=35% 如图 (3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;
画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.18、12【解析】
设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.19、 (1)证明见解析;(2)EF=1.【解析】
(1)如图1,利用折叠性质得EA=EC,∠1=∠2,再证明∠1=∠3得到AE=AF,则可判断四边形AECF为平行四边形,从而得到四边形AECF为菱形;(2)作EH⊥AB于H,如图,利用四边形AECF为菱形得到AE=AF=CE=13,则判断四边形ABEF为平行四边形得到EF=AB,根据等腰三角形的性质得AH=BH,再在Rt△BEH中利用tanB==可计算出BH=5,从而得到EF=AB=2BH=1.【详解】(1)证明:如图1,∵平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,∴EA=EC,∠1=∠2,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=CE,而AF∥CE,∴四边形AECF为平行四边形,∵EA=EC,∴四边形AECF为菱形;(2)解:作EH⊥AB于H,如图,∵E为BC中点,BC=26,∴BE=EC=13,∵四边形AECF为菱形,∴AE=AF=CE=13,∴AF=BE,∴四边形ABEF为平行四边形,∴EF=AB,∵EA=EB,EH⊥AB,∴AH=BH,在Rt△BEH中,tanB==,设EH=12x,BH=5x,则BE=13x,∴13x=13,解得x=1,∴BH=5,∴AB=2BH=1,∴EF=1.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了平行四边形的性质、菱形的判定与性质.20、(1)平均数为320件,中位数是210件,众数是210件;(2)不合理,定210件【解析】试题分析:(1)根据平均数、中位数和众数的定义即可求得结果;(2)把月销售额320件与大部分员工的工资比较即可判断.(1)平均数件,∵最中间的数据为210,∴这组数据的中位数为210件,∵210是这组数据中出现次数最多的数据,∴众数为210件;(2)不合理,理由:在15人中有13人销售额达不到320件,定210件较为合理.考点:本题考查的是平均数、众数和中位数点评:解答本题的关键是熟练掌握找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.21、 (1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】
(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.22、(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴. ∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴. ∵,∴,∴.设点坐标为,则点坐标为. ∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.23、,【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,利用-1的偶次幂为1及特殊角的三角函数值求出a的值,代入计算即可求出值.解:原式=,当,原式=. “点睛”此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.24、(1)y=﹣x2+2x+3(2)(,)(3)当点P的坐标为(,)时,四边形ACPB的最大面积值为 【解析】
(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】(1)将点B和点C的坐标代入函数解析式,得 解得 二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴ ∴点P的纵坐标,当时,即 解得(不合题意,舍),∴点P的坐标为 (3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得 解得 直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1, S四边形ABPC=S△ABC+S△PCQ+S△PBQ 当m=时,四边形ABPC的面积最大.当m=时,,即P点的坐标为 当点P的坐标为时,四边形ACPB的最大面积值为.【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用菱形的性质得出P点的纵坐标,又利用了自变量与函数值的对应关系;解(3)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质.
相关试卷
这是一份[数学][二模]内蒙古自治区呼和浩特市回民区2024年中考二模试题(解析版),共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年内蒙古呼和浩特市回民区中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份07,2024年内蒙古自治区呼和浩特市回民区中考二模数学试题,共5页。试卷主要包含了1)等内容,欢迎下载使用。