搜索
    上传资料 赚现金
    英语朗读宝

    北师大数学七下复习阶梯训练:相交线与平行线(提高训练)含解析

    北师大数学七下复习阶梯训练:相交线与平行线(提高训练)含解析第1页
    北师大数学七下复习阶梯训练:相交线与平行线(提高训练)含解析第2页
    北师大数学七下复习阶梯训练:相交线与平行线(提高训练)含解析第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北师大版七年级下册第二章 相交线与平行线综合与测试同步测试题

    展开

    这是一份初中数学北师大版七年级下册第二章 相交线与平行线综合与测试同步测试题,共11页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。
     相交线与平行线(提高训练)一、单选题1如图,直线 与直线 相交,已知 ,则 的度数是(  )  A B C D2如图所示,若 ,则 的度数是(  )  A70° B60° C50° D40°3如图,直线ABCD相交于点OOE平分∠BOC,若∠BOD∠BOE=12,则∠AOE的大小为(  )A72° B98° C100° D108°4已知∠138°36′∠238.36°∠338.6°, 则下列说法正确的是(  )A∠1∠2 B∠2∠3  C∠1∠3 D∠1∠2∠3互不相等5已知∠α是锐角,∠α∠β互补,∠α∠γ互余,则∠β-∠γ的值等于(  )  A45° B60° C90° D180°6若一个角比它的余角大30°,则这个角等于(  )  A30° B60° C105° D120°7如图,点AOB在一条直线上,OE⊥AB于点O,如果∠1∠2互余,那么图中相等的角有(  )A6 B5 C4 D38下列说法中,正确的是(  )A.一个锐角的补角大于这个角的余角B.一对互补的角中,一定有一个角是锐角C.锐角的余角一定是钝角D.锐角的补角一定是锐角9在灯塔O处观测到轮船A位于灯塔北偏西54°的方向,同时观测到轮船B位于灯塔南偏东15°的方向,那么∠AOB的大小为(  )A131° B141° C151° D159°10如图,点O在直线上,,则的大小为(  )A B C D二、填空题11如图,点 O 在直线 AB 上,过点 O 作射线 OC,若∠AOC=53°17′28″,则∠BOC 的度数是              12一个角的补角比它的余角的4倍少60°,这个角的度数为       13如图,码头、火车站分别位于AB两点,直线ab分别表示铁路与河流.
    两点确定一条直线;两点之间线段最短;垂线段最短.1)从码头A到火车站B怎样走最近,请画图,并选择理由              (填序号).2)从码头A到铁路a怎样走最近,请画图,并选择理由           (填序号).14已知一个角的余角是35°,那么这个角的度数是       15如图, 直线 与直线 相交于点 , 已知 ,       .16一个角为,则它的余角度数为            三、解答题17如图,已知 平分  AB于点  ,求  的度数.  18如图,点AOB在同一条直线上,射线OD平分∠AOC,且∠DOE90°.求证:OE平分∠BOC19如果一个角的补角是这个角的余角的4倍,求这个角.20如图,点 BC的延长线上, .求证: . 21如图:已知O是直线CD上的点,OA平分∠BOC∠AOC40°,求∠BOD度数.22根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF∠F∠B∠D,试说明AB∥DC
     证明:∠DAF∠F(已知).AD∥BF                                          ),∠D∠DCF                                          ).∠B∠D(已知),                                          )=∠DCF(等量代换),AB∥DC                                          ).四、综合题23如图,点AOB在同一条直线上,分别平分.1)求的度数.2)如果,求的度数.24如图,已知直线 相交于点O1)若 ,求 的度数.2)若 ,求 的度数.25如图,直线AB和直线CD交于O点,EO⊥AB1)若2∠EOC∠COB,求∠AOD的度数.2)作OF⊥CD,证明:∠EOF∠COB
    答案解析部分【解析】【解答】解:如图, 的度数是 .故答案为:B.【分析】对图形进行角标注,根据∠1=∠2可推出a∥b,根据平行线的性质可得∠3=∠5=100°,然后根据邻补角的性质就可求出∠4的度数.【解析】【解答】解:如图,故答案为:A.【分析】对图形进行角标注,由邻补角的性质可得∠5=60°,则∠1=∠5,推出l1∥l2,得到∠3=∠6,然后根据对顶角的性质进行解答.【解析】【解答】解:OE平分∠BOC
    ∠EOC=∠BOE
    ∠BOD∠BOE=12
    ∠BOD=x,则∠EOC=∠BOE=2x
    ∠BOD+∠EOC+∠BOE=180°
    x+2x+2x=180°
    解之:x=36°
    ∠COE=2×36°=72°
    ∠BOD=∠AOC=36°
    ∠AOE=∠AOC+∠COE=36°+72°=108°.
    故答案为:D.
    【分析】利用角平分线的性质和已知条件∠BOD∠BOE=12,设∠BOD=x,可表示出∠EOC∠BOE,利用∠BOD+∠EOC+∠BOE=180°,可得到关于x的方程,解方程求出x的值,可得到∠COE∠BOD的度数;再利用对顶角相等可求出∠AOC的度数;然后根据∠AOE=∠AOC+∠COE,代入计算求出∠AOE的度数.【解析】【解答】解:∠238.36°=38°+0.36×60′=38°+21′+0.6×60″=38°21′36″
    ∠338.6°=38°36′ 
    ∠1=∠3.
    故答案为:C. 
    【分析】将度转化为度,分,秒,再比较大小,可得答案.【解析】【解答】解:∠α∠β互补,∠α∠γ互余,
    ∠α+∠β=180°∠α+∠γ=90°
    ∠β-∠γ=90°.
    故答案为:C.
    【分析】利用互补的两角之和为180°,互余的两角之和为90°,可得到∠α+∠β=180°∠α+∠γ=90°,再将两式相减,可求出∠β-∠γ的值.【解析】【解答】解:设这个角为α,由题意得,α-(90°α)=30°解得:α60°故答案为:B.【分析】设这个角为α,则它的余角为:90°-α,根据题意可得α-(90°-α)30°,求解即可.【解析】【解答】解:图中相等的角有,共5故答案为:B
    【分析】根据互为余角的两个角的和等于90度和等角的余角相等解答即可。【解析】【解答】解:A:一个锐角的补角为钝角,它的余角为锐角,故其补角大于其余角,选项A符合题意;B:一对互补的角中,也可以两个角是直角,故B不符合题意;C:锐角的余角一定是锐角,故C不符合题意;D:锐角的补角一定是钝角,故D不符合题意.故答案为:A【分析】根据余角的定义及补角的定义逐项判断即可。【解析】【解答】解:如图,由题意,得∠1=54°∠2=15°由余角的性质,得:由角的和差,得:∠AOB=∠3+∠4+∠2=故答案为:B【分析】先求出,再根据∠AOB=∠3+∠4+∠2即可求解.【解析】【解答】解:∠AOC=125°∠BOC=180°-∠AOC=55°∠COD=90°∠BOD=∠COD-∠BOC=35°故选:C【分析】由邻补角的定义求出∠BOC=180°-∠AOC=55°,利用∠BOD=∠COD-∠BOC即可求解.【解析】【解答】解:∠AOC=53°17'28"
    ∠BOC=180°-∠AOC
    =180°-53°17'28"
    =126°42'32".
    故答案为:126°42'32".

    【分析】先根据邻补角的性质列式,再根据度数的换算关系计算,即可得出结果.【解析】【解答】解:设这个角的度数为x,根据题意得
    180°-x=490°-x-60° 
    180°-x=360°-4x-60° 
    3x=120° 
    解之:x=40°. 
    故答案为:40°. 
    【分析】利用已知可知等量关系为:180°-这个角的度数=490°-这个角的度数)-60°,设未知数,列方程,然后求出方程的解即可.【解析】【分析】(1)从码头A到火车站B的距离就是点与点的距离,利用两点之间线段最短进行解答即可.2)由题意可知是点到直线的距离,因此利用垂线段最短,画出图形即可.【解析】【解答】解:一个角的余角为35°
    这个角的度数为:90°-35°=55°.
    故答案为:55°.
    【分析】利用互余两角之和为90°,列式计算可求出这个角的度数.【解析】【解答】解:




    故答案为:120º
    【分析】由垂直,得到,由对顶角相等,得到,从而得到结果。【解析】【解答】解:90°-24°40'=65°20'故答案为:
    【分析】根据余角的定义可得90°-24°40'=65°20'【解析】【分析】由AB//CD可求得∠GFC=∠GMA=52°,再由∠GFC+∠GFD=180°求得∠GFD=128°;再根据角平分线定义可得∠EFD=∠GFD=64°,再由平行线性质可知∠BEF+∠EFD=180°,即可求出结果.【解析】【分析】由垂直的定义及平角的定义可得 ∠DOC+∠COE90°∠AOD+∠BOE90°, 由角平分线的定义可得 ∠AOD∠DOC,即得∠AOD+∠COE90°, 根据余角的性质可得∠COE∠BOE,根据角平分线的定义即证.【解析】【分析】设这个角为,则这个的补角的度数为(180x)°,它的余角的度数为(90x)°,根据相等关系这个角的补角的度数=4×这个角的余角的度数可列方程求解.【解析】【分析】根据同位角相等两直线平行求出 ,然后根据两直线平行同旁内角互补分别列式,等量代换,即可证出 .【解析】【分析】根据角平分线定义得 ∠BOC=2∠AOC ,据此求出∠BOC的度数,再由补角的性质求∠BOD即可.【解析】【分析】利用平行线的判定与性质求解即可。【解析】【分析】(1)由角平分线定义得∠COD=∠AOC∠COE=∠BOC,再由∠DOE=∠COD+∠COE可求解;
    2)由余角的意义可求得∠AOD的度数,再根据邻补角的意义可求解.【解析】【分析】(1)利用平角的定义可得到∠BOE180°−∠AOC−∠COE,代入计算求出∠BOE的度数.2)利用邻补角的定义可得到∠BOD+∠BOC=180°,结合已知条件求出∠BOD的度数,利用对顶角相等可得到∠AOC的度数;然后根据∠AOE∠COE∠AOC,代入计算求出∠AOE的度数.【解析】【分析】(1)根据垂直的定义得出∠EOC+∠COB=90°,再根据2∠EOC∠COB得出 ∠COB=60°,根据对顶角相等得出∠AOD=∠COB=60°,即可得出答案;
    2)根据垂直的定义得出∠EOC+∠COB=∠EOF+∠EOC=90°,即可得出∠COB=∠EOF.

    相关试卷

    浙教版数学七下复习阶梯训练:因式分解(提高训练)含解析:

    这是一份浙教版数学七下复习阶梯训练:因式分解(提高训练)含解析,共8页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。

    浙教版数学七下复习阶梯训练:整式的乘除(提高训练)含解析:

    这是一份浙教版数学七下复习阶梯训练:整式的乘除(提高训练)含解析,共8页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。

    浙教版数学七下期末复习阶梯训练:分式(提高训练)含解析:

    这是一份浙教版数学七下期末复习阶梯训练:分式(提高训练)含解析,共11页。试卷主要包含了单选题,填空题,解答题,综合题等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map