四川省巴中市名校2022年中考数学最后一模试卷含解析
展开
这是一份四川省巴中市名校2022年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列运算正确的是,若2<<3,则a的值可以是,tan45º的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )A.平均数 B.中位数 C.众数 D.方差2.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )A. B.C. D.3.如图,C,B是线段AD上的两点,若,,则AC与CD的关系为( ) A. B. C. D.不能确定4.下列运算正确的是( )A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b65.一个几何体的三视图如图所示,该几何体是 A.直三棱柱 B.长方体 C.圆锥 D.立方体6.若2<<3,则a的值可以是( )A.﹣7 B. C. D.127.tan45º的值为( )A. B.1 C. D.8.如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC、BD、AC,下列结论中不一定正确的是( )A.∠ACB=90° B.OE=BE C.BD=BC D.9.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A.0.15 B.0.2 C.0.25 D.0.310.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是( )A.a=﹣2 B.a= C.a=1 D.a=二、填空题(共7小题,每小题3分,满分21分)11.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).12.不等式组的解集为____.13.如图,AB为⊙O的直径,BC为⊙O的弦,点D是劣弧AC上一点,若点E在直径AB另一侧的半圆上,且∠AED=27°,则∠BCD的度数为_______.14.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果. 1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.15.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.16.分解因式:a3﹣a=_____.17.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.三、解答题(共7小题,满分69分)18.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.(5分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?20.(8分)如图,在Rt中,,分别以点A、C为圆心,大于长为半径画弧,两弧相交于点M、N,连结MN,与AC、BC分别交于点D、E,连结AE.(1)求;(直接写出结果)(2)当AB=3,AC=5时,求的周长.21.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图. 成绩分组
组中值
频数
25≤x<30
27.5
4
30≤x<35
32.5
m
35≤x<40
37.5
24
40≤x<45
a
36
45≤x<50
47.5
n
50≤x<55
52.5
4
(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?22.(10分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.(1)如图1,若抛物线经过点A和D(﹣2,0).①求点C的坐标及该抛物线解析式;②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.23.(12分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.24.(14分)某中学九年级数学兴趣小组想测量建筑物AB的高度他们在C处仰望建筑物顶端A处,测得仰角为,再往建筑物的方向前进6米到达D处,测得仰角为,求建筑物的高度测角器的高度忽略不计,结果精确到米,,
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B.2、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3、B【解析】
由AB=CD,可得AC=BD,又BC=2AC,所以BC=2BD,所以CD=3AC.【详解】∵AB=CD,∴AC+BC=BC+BD,即AC=BD,又∵BC=2AC,∴BC=2BD,∴CD=3BD=3AC.故选B.【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点.4、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.5、A【解析】
根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6、C【解析】
根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范围是6<a<1.观察选项,只有选项C符合题意.故选C.【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.7、B【解析】
解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.8、B【解析】
根据垂径定理及圆周角定理进行解答即可.【详解】∵AB是⊙O的直径,∴∠ACB=90°,故A正确;∵点E不一定是OB的中点,∴OE与BE的关系不能确定,故B错误;∵AB⊥CD,AB是⊙O的直径,∴,∴BD=BC,故C正确;∴,故D正确.故选B.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.9、B【解析】读图可知:参加课外活动的人数共有(15+30+20+35)=100人,其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,故选B.10、A【解析】
将各选项中所给a的值代入命题“对于任意实数a, ”中验证即可作出判断.【详解】(1)当时,,此时,∴当时,能说明命题“对于任意实数a, ”是假命题,故可以选A;(2)当时,,此时,∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能B;(3)当时,,此时,∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能C;(4)当时,,此时,∴当时,不能说明命题“对于任意实数a, ”是假命题,故不能D;故选A.【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、甲【解析】
根据甲,乙两公司折线统计图中2014年、2018年的销售量,计算即可得到增长量;根据两个统计图中甲,乙两公司销售增长量即可确定答案.【详解】解:从折线统计图中可以看出:甲公司2014年的销售量约为100辆,2018年约为600辆,则从2014~2018年甲公司增长了500辆;乙公司2014年的销售量为100辆,2018年的销售量为400辆,则从2014~2018年,乙公司中销售量增长了300辆.所以这两家公司中销售量增长较快的是甲公司,故答案为:甲.【点睛】本题考查了折线统计图的相关知识,由统计图得到关键信息是解题的关键;12、x>1【解析】
分别解出两不等式的解集再求其公共解.【详解】由①得:x>1
由②得:x>∴不等式组的解集是x>1.【点睛】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.13、117°【解析】
连接AD,BD,利用圆周角定理解答即可.【详解】连接AD,BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠AED=27°,∴∠DBA=27°,∴∠DAB=90°-27°=63°,∴∠DCB=180°-63°=117°,故答案为117°【点睛】此题考查圆周角定理,关键是根据圆周角定理解答.14、0.532, 在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值. 【解析】
根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.【解析】
根据旋转的性质,平移的性质即可得到由△DEF得到△ABC的过程.【详解】由题可得,由△DEF得到△ABC的过程为:先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.(答案不唯一)故答案为:先以点O为旋转中心,逆时针旋转90°,再将得到的三角形沿x轴翻折.【点睛】本题考查了坐标与图形变化﹣旋转,平移,对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.16、a(a+1)(a﹣1)【解析】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).17、①线段垂直平分线上的点与这条线段两个端点的距离相等;②等量代换 同弧所对的圆周角相等 【解析】
(1)根据线段的垂直平分线的性质定理以及等量代换即可得出结论.
(2)根据同弧所对的圆周角相等即可得出结论.【详解】(1)如图2中,∵MN垂直平分AB,EF垂直平分BC,∴OA=OB,OB=OC(线段垂直平分线上的点与这条线段两个端点的距离相等),∴OA=OB=OC(等量代换)故答案是: (2)∵,∴∠APB=∠ACB(同弧所对的圆周角相等).故答案是:(1)线段垂直平分线上的点与这条线段两个端点的距离相等和等量代换;(2)同弧所对的圆周角相等.【点睛】考查作图-复杂作图、线段的垂直平分线的性质、三角形的外心等知识,解题的关键是熟练掌握三角形外心的性质. 三、解答题(共7小题,满分69分)18、(1)2、45、20;(2)72;(3) 【解析】分析:(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.详解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)=.点睛:此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.19、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.【详解】解:(1)设一台型无人机售价元,一台型无人机的售价元, ,解得,,答:一台型无人机售价元,一台型无人机的售价元;(2)①由题意可得,即y与x的函数关系式为;②∵B型无人机的数量不少于A型无人机的数量的2倍,,解得,,,∴当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少.【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.20、(1)∠ADE=90°;(2)△ABE的周长=1.【解析】试题分析:(1)是线段垂直平分线的做法,可得∠ADE=90°(2)根据勾股定理可求得BC=4,由垂直平分线的性质可知AE=CE,所以△ABE的周长为AB+BE+AE=AB+BC=1试题解析:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=1.考点:1、尺规作图;2、线段垂直平分线的性质;3、勾股定理;4、三角形的周长21、(1)详见解析(2)2400【解析】
(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值.(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数.【详解】解:(1)组距是:37.5﹣32.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12;则n=100﹣4﹣12﹣24﹣36﹣4=1.补全频数分布直方图如下:(2)∵优秀的人数所占的比例是:=0.6,∴该县中考体育成绩优秀学生人数约为:4000×0.6=2400(人)22、(1)①y=﹣x2+x+3;②P( ,)或P'( ,﹣);(2) ≤a<1;【解析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.【详解】(1)①如图2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋转知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,过点C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),抛物线经过点A(1,3),和D(﹣2,1),∴,∴,∴抛物线解析式为y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如图1,OP∥BC,∵B(1,1),C(4,1),∴直线BC的解析式为y=x﹣,∴直线OP的解析式为y=x,∵抛物线解析式为y=﹣x2+x+3;联立解得,或(舍)∴P(,);在直线OP上取一点M(3,1),∴点M的对称点M'(3,﹣1),∴直线OP'的解析式为y=﹣x,∵抛物线解析式为y=﹣x2+x+3;联立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如图3,∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,∴,∴抛物线y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合条件的Q点恰好有2个,∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【点睛】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.23、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.【详解】(1)将点E代入直线解析式中,0=﹣×4+m,解得m=3,∴解析式为y=﹣x+3,∴C(0,3),∵B(3,0),则有,解得,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线BD的解析式为y=kx+b,代入点B、D,,解得,∴直线BD的解析式为y=﹣2x+6,则点M的坐标为(x,﹣2x+6),∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,∴当x=时,S有最大值,最大值为.(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HG∥y轴,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,当t2﹣t=t时,解得t1=0(舍),t2=4,此时点P(4,0).当t2﹣t=﹣t时,解得t1=0(舍),t2=,此时点P(,0).综上,点P的坐标为(4,0)或(,0).【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.24、14.2米;【解析】
Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC-BD可得关于AB 的方程,解方程可得.【详解】设米∵∠C=45°在中,米,, 又米,在中Tan∠ADB= ,Tan60°=解得答,建筑物的高度为米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.
相关试卷
这是一份2023年四川省巴中市南江县中考数学一模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022年山东省济南实验市级名校中考数学最后一模试卷含解析,共21页。试卷主要包含了若点A,﹣2018的相反数是,下列运算正确的是等内容,欢迎下载使用。
这是一份2022届顺义区重点名校中考数学最后一模试卷含解析,共16页。