四川省绵阳宜溪中学心2022年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为
A.元 B.元 C.元 D.元
2.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是( )
A.一次性购买数量不超过10本时,销售价格为20元/本
B.a=520
C.一次性购买10本以上时,超过10本的那部分书的价格打八折
D.一次性购买20本比分两次购买且每次购买10本少花80元
3.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是
A. B. C. D.
4.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )
A.22x=16(27﹣x) B.16x=22(27﹣x) C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)
5.如图,在中, ,将折叠,使点落在边上的点处, 为折痕,若,则的值为( )
A. B. C. D.
6.在如图的计算程序中,y与x之间的函数关系所对应的图象大致是( )
A. B. C. D.
7.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )
A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
8.下列计算正确的是( )
A.(a)=a B.a+a=a
C.(3a)•(2a)=6a D.3a﹣a=3
9.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为( )
A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣7
10.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )
A.20° B.40° C.60° D.80°
11.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:
尺码/cm | 21.5 | 22.0 | 22.5 | 23.0 | 23.5 |
人数 | 2 | 4 | 3 | 8 | 3 |
学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是( )
A.平均数 B.加权平均数 C.众数 D.中位数
12.二元一次方程组的解为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.
14.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.
15.已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:;;,c是关于x的一元二次方程的两个实数根;其中正确结论是______填写序号
16.已知二次函数y=x2,当x>0时,y随x的增大而_____(填“增大”或“减小”).
17.如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是____.
18.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
本次接受调查的跳水运动员人数为 ,图①中m的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
20.(6分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y轴的抛物线与网格对角线OM的两个交点为A,B,其顶点为C,如果△ABC是该抛物线的内接格点三角形,AB=3,且点A,B,C的横坐标xA,xB,xC满足xA<xC<xB,那么符合上述条件的抛物线条数是( )
A.7 B.8 C.14 D.16
21.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
22.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
23.(8分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.
(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;
(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值.
24.(10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.
25.(10分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.
对雾霾了解程度的统计表
对雾霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比较了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
请结合统计图表,回答下列问题:统计表中:m= ,n= ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
26.(12分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.
(1)求证:DF是BF和CF的比例中项;
(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.
27.(12分)某校为表彰在“书香校园”活动中表现积极的同学,决定购买笔记本和钢笔作为奖品.已知5个笔记本、2支钢笔共需要100元;4个笔记本、7支钢笔共需要161元
(1)笔记本和钢笔的单价各多少元?
(2)恰好“五一”,商店举行“优惠促销”活动,具体办法如下:笔记本9折优惠;钢笔10支以上超出部分8折优惠若买x个笔记本需要y1元,买x支钢笔需要y2元;求y1、y2关于x的函数解析式;
(3)若购买同一种奖品,并且该奖品的数量超过10件,请你分析买哪种奖品省钱.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
亿=115956000000,
所以亿用科学记数法表示为1.15956×1011,
故选C.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、D
【解析】
A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.
【详解】
解:A、∵200÷10=20(元/本),
∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;
C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,
∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;
B、∵200+16×(30﹣10)=520(元),
∴a=520,B选项正确;
D、∵200×2﹣200﹣16×(20﹣10)=40(元),
∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.
故选D.
【点睛】
考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.
3、C
【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
【详解】
A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
故选C.
【点睛】
本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
4、D
【解析】
设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.
5、B
【解析】
根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.
【详解】
解:由折叠性质可知:AE=DE=3
∴CE=AC-AE=4-3=1
在Rt△CED中,CD=
故选:B
【点睛】
本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.
6、A
【解析】
函数→一次函数的图像及性质
7、B
【解析】
分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.
详解:乙和△ABC全等;理由如下:
在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,
所以乙和△ABC全等;
在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,
所以丙和△ABC全等;
不能判定甲与△ABC全等;
故选B.
点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
8、A
【解析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A.(a2)3=a2×3=a6,故本选项正确;
B.a2+a2=2a2,故本选项错误;
C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;
D.3a﹣a=2a,故本选项错误.
故选A.
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
9、C
【解析】
试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.
考点:科学记数法.
10、C
【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
【详解】
∵,,
∴,
∵,
∴,
∵,
∴,
故选C.
【点睛】
本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
11、C
【解析】
根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.
【详解】
解:根据商店经理统计表决定本月多进尺码为23.0cm的女式运动鞋,就说明穿23.0cm的女式运动鞋的最多,
则商店经理的这一决定应用的统计量是这组数据的众数.
故选:C.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
12、C
【解析】
利用加减消元法解这个二元一次方程组.
【详解】
解:
①-②2,得:y=-2,
将y=-2代入②,得:2x-2=4,
解得,x=3,
所以原方程组的解是.
故选C.
【点睛】
本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、35°
【解析】
∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,
∴PE是△ABD的中位线,PF是△BDC的中位线,
∴PE=AD,PF=BC,
又∵AD=BC,
∴PE=PF,
∴∠PFE=∠PEF=35°.
故答案为35°.
14、
【解析】
先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.
【详解】
∵⊙O的直径BC=,
∴AB=BC=1,
设圆锥的底面圆的半径为r,
则2πr=,解得r=,
即圆锥的底面圆的半径为米故答案为.
15、①③
【解析】
试题解析:∵抛物线开口向上且经过点(1,1),双曲线经过点(a,bc),∴,∴bc>0,故①正确;
∴a>1时,则b、c均小于0,此时b+c<0,当a=1时,b+c=0,则与题意矛盾,当0<a<1时,则b、c均大于0,此时b+c>0,故②错误;
∴可以转化为:,得x=b或x=c,故③正确;
∵b,c是关于x的一元二次方程的两个实数根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,当a>1时,2a﹣1>3,当0<a<1时,﹣1<2a﹣1<3,故④错误;
故答案为①③.
16、增大.
【解析】
根据二次函数的增减性可求得答案
【详解】
∵二次函数y=x2
的对称轴是y轴,开口方向向上,∴当y随x的增大而增大.
故答案为:增大.
【点睛】
本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.
17、1
【解析】
如图作点D关于BC的对称点D′,连接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出当E、F、P、D′共线时,PF+PD′定值最小,最小值=ED′﹣EF.
【详解】
如图作点D关于BC的对称点D′,连接PD′,ED′,
在Rt△EDD′中,∵DE=6,DD′=1,
∴ED′==10,
∵DP=PD′,
∴PD+PF=PD′+PF,
∵EF=EA=2是定值,
∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=10﹣2=1,
∴PF+PD的最小值为1,
故答案为1.
【点睛】
本题考查翻折变换、矩形的性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.
18、答案不唯一
【解析】
分析:把y改写成顶点式,进而解答即可.
详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.
点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为
y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)40人;1;(2)平均数是15;众数16;中位数15.
【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.
【详解】
解:(1)4÷10%=40(人),
m=100-27.5-25-7.5-10=1;
故答案为40,1.
(2)观察条形统计图,
∵,
∴这组数据的平均数为15;
∵在这组数据中,16出现了12次,出现的次数最多,
∴这组数据的众数为16;
∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,
∴这组数据的中位数为15.
【点睛】
本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.
20、C
【解析】
根据在OB上的两个交点之间的距离为3,可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.
【详解】
解:如图,开口向下,经过点(0,0),(1,3),(3,3)的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=1.
故选C.
【点睛】
本题是二次函数综合题.主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.
21、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
22、29.8米.
【解析】
作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
【详解】
解:如图,作,,
由题意得:
米,
米,
则米,
答:这架无人飞机的飞行高度为米.
【点睛】
此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
23、y=x﹣5
【解析】
分析:(1)根据定义,直接变形得到伴生一次函数的解析式;
(2)求出顶点,代入伴生函数解析式即可求解;
(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.
详解:(1)∵二次函数y=(x﹣1)2﹣4,
∴其伴生一次函数的表达式为y=(x﹣1)﹣4=x﹣5,
故答案为y=x﹣5;
(2)∵二次函数y=(x﹣1)2﹣4,
∴顶点坐标为(1,﹣4),
∵二次函数y=(x﹣1)2﹣4,
∴其伴生一次函数的表达式为y=x﹣5,
∴当x=1时,y=1﹣5=﹣4,
∴(1,﹣4)在直线y=x﹣5上,
即:二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;
(3)∵二次函数y=m(x﹣1)2﹣4m,
∴其伴生一次函数为y=m(x﹣1)﹣4m=mx﹣5m,
∵P点的横坐标为n,(n>2),
∴P的纵坐标为m(n﹣1)2﹣4m,
即:P(n,m(n﹣1)2﹣4m),
∵PQ∥x轴,
∴Q((n﹣1)2+1,m(n﹣1)2﹣4m),
∴PQ=(n﹣1)2+1﹣n,
∵线段PQ的长为,
∴(n﹣1)2+1﹣n=,
∴n=.
点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.
24、(1)1(2)10%.
【解析】
试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;
(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.
试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得
,
解得x=1.
经检验,x=1是原方程的根.
答:每张门票的原定票价为1元;
(2)设平均每次降价的百分率为y,根据题意得
1(1-y)2=324,
解得:y1=0.1,y2=1.9(不合题意,舍去).
答:平均每次降价10%.
考点:1.一元二次方程的应用;2.分式方程的应用.
25、(1)20;15%;35%;(2)见解析;(3)126°.
【解析】
(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
(2)求出D的学生人数,然后补全统计图即可;
(3)用D的百分比乘360°计算即可得解.
【详解】
解:(1)非常了解的人数为20,
60÷400×100%=15%,
1﹣5%﹣15%﹣45%=35%,
故答案为20;15%;35%;
(2)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(3)D部分扇形所对应的圆心角:360°×35%=126°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
26、证明见解析
【解析】
试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;
(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得 ,
由(1)可得 ,从而得 ,问题得证.
试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,
∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,
∵E是AC的中点,
∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,
∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,
又∵∠BFD=∠DFC,
∴△BFD∽△DFC,
∴BF:DF=DF:FC,
∴DF2=BF·CF;
(2)∵AE·AC=ED·DF,
∴ ,
又∵∠A=∠A,
∴△AEG∽△ADC,
∴∠AEG=∠ADC=90°,
∴EG∥BC,
∴ ,
由(1)知△DFD∽△DFC,
∴ ,
∴ ,
∴EG·CF=ED·DF.
27、(1)笔记本单价为14元,钢笔单价为15元;(2)y1=14×0.9x=12.6x,y2=;(3)当购买奖品数量超过2时,买钢笔省钱;当购买奖品数量少于2时,买笔记本省钱;当购买奖品数量等于2时,买两种奖品花费一样.
【解析】
(1)设每个文具盒z元,每支钢笔y元,可列方程组得解之得
答:每个文具盒14元,每支钢笔15元.
(2)由题意知,y1关于x的函数关系式是y1=14×90%x,即y1=12.6x.
买钢笔10支以下(含10支)没有优惠.故此时的函数关系式为y2=15x:
当买10支以上时,超出的部分有优惠,故此时的函数关系式为y2=15×10+15×80%(x-10),
即y2=12x+1.
(3)因为x>10,所以y2=12x+1.当y1<y2,即12.6x<12x+1时,解得x<2;
当y1=y2,即12.6x=12x+1时,解得x=2;
当y1>y2,即12.6x>12x+1时,解得x>2.
综上所述,当购买奖品超过10件但少于2件时,买文具盒省钱;
当购买奖品2件时,买文具盒和买钢笔钱数相等;
当购买奖品超过2件时,买钢笔省钱.
四川省绵阳宜溪中学心2023-2024学年数学九上期末经典模拟试题含答案: 这是一份四川省绵阳宜溪中学心2023-2024学年数学九上期末经典模拟试题含答案,共8页。试卷主要包含了二次函数图象如图,下列结论等内容,欢迎下载使用。
2023-2024学年四川省绵阳宜溪中学心九年级数学第一学期期末达标测试试题含答案: 这是一份2023-2024学年四川省绵阳宜溪中学心九年级数学第一学期期末达标测试试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,若正比例函数y=mx,已知抛物线y=x2+等内容,欢迎下载使用。
2023-2024学年四川省绵阳宜溪中学心数学八上期末经典模拟试题含答案: 这是一份2023-2024学年四川省绵阳宜溪中学心数学八上期末经典模拟试题含答案,共8页。试卷主要包含了下列四个命题中,是真命题的是,若关于的方程的解为,则等于,下列实数中,是无理数的是,若是完全平方式,则的值为等内容,欢迎下载使用。