所属成套资源:新人教A版高中数学必修第二册全一册课时学案
高中数学人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示第一课时导学案
展开
这是一份高中数学人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示第一课时导学案,共8页。
第一课时 直线与平面垂直的判定新课程标准解读核心素养1.从相关定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与平面的垂直关系数学抽象2.归纳出直线与平面垂直的判定定理逻辑推理3.了解直线与平面所成角直观想象 木工要检查一根木棒是否和板面垂直,只需用曲尺在不同的方向(但不是相反的方向)检查两次,如图.如果两次检查时,曲尺的两边都分别与木棒和板面密合,便可以判定木棒与板面垂直.[问题] (1)用“L”形木尺检查一次能判定木棒与板面垂直吗?(2)上述问题说明了直线与平面垂直的条件是什么? 知识点一 直线与平面垂直1.定义:如果直线l与平面α内的任意一条直线都垂直,那么直线l与平面α互相垂直,记作l⊥α.2.概念垂线直线l叫做平面α的垂线垂面平面α叫做直线l的垂面垂足直线与平面唯一的公共点垂线段过一点作平面的垂线,该点与垂足间的线段点到平面的距离垂线段的长度 3.性质:过一点垂直于已知平面的直线有且只有一条.如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?提示:不一定.如图,长方体ABCDA1B1C1D1中,在棱AB上任取一点E,过点E作EF∥AD交CD于点F,则这样的直线能作出无数条,显然AB垂直于平面ABCD内的无数条直线,但AB⊂平面ABCD,故直线AB与平面ABCD不垂直.不仅如此,因为A1B1∥AB,所以直线A1B1也垂直于平面ABCD内的无数条直线,但是直线A1B1∥平面ABCD. 直线l⊥平面α,直线m⊂α,则l与m不可能( )A.平行 B.相交C.异面 D.垂直解析:选A 因为l⊥α,所以l垂直于平面α内的每一条直线,又m⊂α,所以l⊥m,所以直线l与m不可能平行.知识点二 直线与平面垂直的判定定理文字语言如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直符号语言l⊥a,l⊥b,a⊂α,b⊂α,a∩b=P⇒l⊥α图形语言对线面垂直判定定理的再理解(1)该定理有五个条件:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b,这五个条件缺一不可.但对l⊥a,l⊥b在什么位置(过不过a,b的交点)、以什么方式(共面或异面)都不作要求,正是这种不作要求的“宽松”条件,使得证明直线与平面垂直的方法很灵活;(2)“两条相交直线”是定理的关键词,应用定理时不能忽略.例如:若一条直线与一个平面内的两条不相交的直线都垂直,则该直线与平面不一定垂直. 定理中的“相交”能去掉吗?提示:不能.1.若三条直线OA,OB,OC两两垂直,则直线OA垂直于( )A.平面OAB B.平面OACC.平面OBC D.平面ABC解析:选C 由线面垂直的判定定理知OA垂直于平面OBC.故选C.2.(多选)下列说法中,正确的是( )A.若直线l与平面α内的一条直线垂直,则l⊥αB.若直线l与平面α内的两条直线垂直,则l⊥αC.若直线l与平面α内的两条相交直线垂直,则l⊥αD.若直线l与平面α内的任意一条直线垂直,则l⊥α解析:选CD 对于A、B,不能判定该直线与平面垂直,该直线与平面可能平行,也可能斜交,也可能在平面内,所以是错误的.C、D是正确的.故选C、D.知识点三 斜线与平面所成的角 有关概念对应图形斜线一条直线l与一个平面α相交,但不与这个平面垂直,这条直线叫做这个平面的斜线斜足斜线和平面的交点A叫做斜足射影过斜线上斜足以外的一点P向平面α引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影直线与平面所成的角定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.规定:一条直线垂直于平面,我们说它们所成的角是90°;一条直线和平面平行,或在平面内,我们说它们所成的角是取值范围0°≤θ≤90° 对斜线和平面所成的角的定义的理解(1)斜线上不同于斜足的点P的选取是任意的;(2)斜线在平面上的射影是过斜足和垂足的一条直线而不是线段. 如图,在正方体ABCDA1B1C1D1中,直线AB1与平面ABCD所成的角等于________;AB1与平面ADD1A1所成的角等于________;AB1与平面DCC1D1所成的角等于________.解析:∠B1AB为AB1与平面ABCD所成的角,即45°;∠B1AA1为AB1与平面ADD1A1所成的角,即45°;AB1与平面DCC1D1平行,即所成的角为0°.答案:45° 45° 0°线面垂直概念的理解[例1] (链接教科书第151页例3)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l不垂直于平面α,则α内没有与l垂直的直线;③若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;④过一点和已知平面垂直的直线有且只有一条.[解析] 当直线l与平面α内的无数条直线垂直时,l与α不一定垂直,所以①不正确;当l与α不垂直时,l可能与α内的无数条平行直线垂直,所以②不正确,③正确;过一点有且只有一条直线垂直于已知平面,所以④正确.[答案] ③④直线与平面垂直定义的“双向”作用(1)证明线面垂直:若一条直线与一个平面内任意一条直线都垂直,则该直线与已知平面垂直.即线线垂直⇒线面垂直;(2)证明线线垂直:若一条直线与一个平面垂直,则该直线与平面内任意一条直线垂直.即线面垂直⇒线线垂直. [跟踪训练]如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________(填序号).解析:根据直线与平面垂直的判定定理,平面内这两条直线必须是相交的,①③④中给定的两直线一定相交,能保证直线与平面垂直,而②梯形的两边可能是上、下底边,它们互相平行,不满足定理条件.答案:①③④直线与平面垂直的判定[例2] (链接教科书第152页练习2题)如图所示,Rt△ABC所在的平面外一点S,SA=SB=SC,点D为斜边AC的中点.求证:直线SD⊥平面ABC.[证明] ∵SA=SC,点D为斜边AC的中点,∴SD⊥AC.如图,连接BD,在Rt△ABC中,则AD=DC=BD,∴△ADS≌△BDS,∴∠ADS=∠BDS,∴SD⊥BD.又AC∩BD=D,∴SD⊥平面ABC.[母题探究](变条件,变设问)在本例中,若AB=BC,其他条件不变,则BD与平面SAC的位置关系是什么?解:∵AB=BC,点D为斜边AC的中点,∴BD⊥AC.又由例题知SD⊥BD.于是BD垂直于平面SAC内的两条相交直线,故BD⊥平面SAC.线线垂直和线面垂直的相互转化 [跟踪训练]1.如图,三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.证明:B1C⊥AB.证明:如图,连接BC1,则O为B1C与BC1的交点.因为侧面BB1C1C为菱形,所以B1C⊥BC1.又AO⊥平面BB1C1C,所以B1C⊥AO.因为BC1∩AO=O,所以B1C⊥平面ABO.由于AB⊂平面ABO,故B1C⊥AB.2.如图,在四面体PABC中,已知BC=6,PC=10,PB=2.F是线段PB上一点,CF=,点E在线段AB上,且EF⊥PB.求证:PB⊥平面CEF.证明:在△PCB中,∵PC=10,BC=6,PB=2,CF=,∴PC2+BC2=PB2,∴△PCB为直角三角形,PC⊥BC,又PC·BC=PB·CF,∴PB⊥CF.又EF⊥PB,EF∩CF=F,∴PB⊥平面CEF.直线与平面所成的角[例3] (链接教科书第152页例4)如图所示,在Rt△BMC中,斜边BM=5,它在平面ABC上的射影AB长为4,∠MBC=60°,求MC与平面CAB所成角的正弦值.[解] 由题意知A是M在平面ABC上的射影,∴MA⊥平面ABC,∴MC在平面CAB上的射影为AC.∴∠MCA即为直线MC与平面CAB所成的角.又∵在Rt△MBC中,BM=5,∠MBC=60°,∴MC=BMsin∠MBC=5sin 60°=5×=.在Rt△MAB中,MA===3.在Rt△MAC中,sin∠MCA===.即MC与平面CAB所成角的正弦值为.求斜线与平面所成角的步骤(1)作图:作(或找)出斜线在平面内的射影,作射影要过斜线上一点作平面的垂线,再过垂足和斜足作直线,注意斜线上点的选取以及垂足的位置要与问题中已知量有关,才能便于计算;(2)证明:证明某平面角就是斜线与平面所成的角;(3)计算:通常在垂线段、斜线和射影所组成的直角三角形中计算. [跟踪训练]在正方体ABCDA1B1C1D1中,E,F分别是AA1,A1D1的中点,求:(1)D1B与平面ABCD所成角的余弦值;(2)EF与平面A1B1C1D1所成的角.解:(1)如图所示,连接DB,∵D1D⊥平面ABCD,∴DB是D1B在平面ABCD内的射影,则∠D1BD即为D1B与平面ABCD所成的角.∵DB=AB,D1B=AB,∴cos∠D1BD==,即D1B与平面ABCD所成角的余弦值为.(2)∵E是A1A的中点,A1A⊥平面A1B1C1D1,∴∠EFA1是EF与平面A1B1C1D1所成的角,在Rt△EA1F中,∵F是A1D1的中点,∴∠EFA1=45°,即EF与平面A1B1C1D1所成的角为45°.1.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是( )A.α∥β,且m⊂α B.m∥n,且n⊥βC.m⊥n,且n⊂β D.m⊥n,且n∥β解析:选B A中,由α∥β,且m⊂α,知m∥β;B中,由n⊥β,知n垂直于平面β内的任意直线,再由m∥n,知m也垂直于β内的任意直线,所以m⊥β,B符合题意;C、D中,m⊂β或m∥β或m与β相交,不符合题意.故选B.2.在长方体ABCDA1B1C1D1中,AB=,BC=AA1=1,则BD1与平面A1B1C1D1所成的角的大小为________.解析:如图所示,连接B1D1,则B1D1是BD1在平面A1B1C1D1上的射影,则∠BD1B1是BD1与平面A1B1C1D1所成的角.在Rt△BD1B1中,tan∠BD1B1===,则∠BD1B1=30°.答案:30°3.如图,在正方体ABCDA1B1C1D1中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O.证明:∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO∩BB1=B,BO,BB1⊂平面BB1O,∴AC⊥平面BB1O,又EF是△ABC的中位线,∴EF∥AC,∴EF⊥平面BB1O.
相关学案
这是一份人教A版 (2019)必修 第二册6.3 平面向量基本定理及坐标表示第一课时导学案,共6页。
这是一份人教A版 (2019)必修 第二册6.2 平面向量的运算第二课时导学案,共7页。
这是一份高中数学人教A版 (2019)必修 第二册8.5 空间直线、平面的平行第一课时学案设计,共5页。