2022年山东省泰安市中考模拟测试数学试题二(word版含答案)
展开2022年泰安中考模拟测试数学试题二
一、选择题(本大题共12个小题,每小题4分,共48分.)
1.-|-2022|的相反数是( )
A.-2022 B.2022 C. D.-
2.下列运算正确的是
A.3a+2a=5a2 B.-8a2÷4a=2a C.-(2a2)3=-8a6 D.4a3·3a2=12a6
3.某个几何体的三视图如图所示,该几何体是( )
4.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为( )
A.45° B.60° C.75° D.85°
第3题图 第4题图 第5题图 第6题图
5.如图,在⊙O中,弦CD与直径AB相交于点E,连接OC,BD.若∠ABD=20°,∠AED=80°,则∠COB的度数为( )
A.80° B.100° C.120° D.140°
6.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是
A.中位数是3,众数是2 B.众数是1,平均数是2
C.中位数是2,众数是2 D.中位数是3,平均数是2.5
7.甲、乙两人沿着总长度为10km的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm/h,则下列方程中正确的是( )
A. B.
C. D.
8.二次函数y=a(x+b)2+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系内的大致图象是( )
9.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)
A.188m B.269m C.286m D.312m
第8题图 第9题图 第10题图
10.如图,AB是⊙O的弦,等边三角形OCD的边CD与⊙O相切于点P,且CD∥AB,连接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,则AD的长是( )
A.6 B.3 C.2 D.
11.如图,矩形ABCD的边CD上有一点E,∠DAE=22.5°,EF⊥AB,垂足为F,将△AEF绕着点F顺时针旋转,使得点A的对应点M落在EF上,点E恰好落在点B处,连接BE.下列结论:①BM⊥AE;②四边形EFBC是正方形;③∠EBM=30°;④S四边形BCEM:S△BFM=(2+1):1.其中结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
第11题图 第12题图 第13题图 第15题图
12.如图,在△ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是( )
A.3 B.4 C.5 D.6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.不等式组无解,则m的取值范围 .
14.如图,在矩形ABCD中,AB=5,AD=4,将矩形ABCD绕点A逆时针旋转得到矩形AB′C′D′,AB′交CD于点E,且DE=B′E,则AE的长为 .
15.如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF= .
16.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕EF与AC相交于点O,连接BO.若AB=4,CF=5,则OB的长为 .
17.如图,反比例函数y=与一次函数y=x﹣2在第三象限交于点A,点B的坐标为(﹣3,0),点P是y轴左侧的一点,若以A,O,B,P为顶点的四边形为平行四边形,则点P的坐标为 .
18.如图,在矩形ABCD中,AB=5,BC=10√3,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为__
三、解答题:(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)
19.(本小题满分8分)⑴,请从不等式组的整数解中选择一个你喜欢的求值.
⑵解不等式组,并求出该不等式组的最小整数解.
20.(本小题满分8分).为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)本次被调查的学生共有 名;
(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为 ,并把条形统计图补充完整;
(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.
21.(本小题满分12分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标;
(3)将y=kx+b向上平移3个单位,与y=交于点D,在y轴上是否存在点P,使PA-PD值最大,若存在求出点P坐标及最大值;若不存在,请说明理由.
22.(本小题满分12分)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进冰墩墩多少个?
(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?
23.(本小题满分12分)如图,△ABC和△DEF都是等腰直角三角形,AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,D为BC边中点,连接AF,且A、F、E三点恰好在一条直线上,EF交BC于点H,连接BF,CE.
(1)求证:AF=CE;
(2)猜想CE,BF,BC之间的数量关系,并证明;
(3)若CH=2,AH=4,请直接写出线段AC,AE的长.
24.(本小题满分13分)
如图,在平面直角坐标系中,抛物线y=﹣x2+•x+(m>0)与x轴交于A(﹣1,0),B(m,0)两点,与y轴交于点C,连接BC.
(1)若OC=2OA,求抛物线对应的函数表达式;
(2)在(1)的条件下,点P位于直线BC上方的抛物线上,当△PBC面积最大时,求点P的坐标;
(3)设直线y=x+b与抛物线交于B,G两点,问是否存在点E(在抛物线上),点F(在抛物线的对称轴上),使得以B,G,E,F为顶点的四边形成为矩形?若存在,求出点E,F的坐标;若不存在,说明理由.
25.(本小题满分13分)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:
【观察与猜想】
(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则的值为 ;
(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则的值为 ;
【类比探究】
(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD;
【拓展延伸】
(4)如图4,在Rt△ABD中,∠BAD=90°,AD=9,tan∠ADB=,将△ABD沿BD翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.
①求的值;
②连接BF,若AE=1,直接写出BF的长度.
2022年山东省泰安市岱岳区中考二模数学试题(word版含答案): 这是一份2022年山东省泰安市岱岳区中考二模数学试题(word版含答案),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2022年山东省泰安市岱岳区中考二模数学试题(word版含答案): 这是一份2022年山东省泰安市岱岳区中考二模数学试题(word版含答案),共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022年山东省泰安中考模拟测试数学试题三(word版含答案): 这是一份2022年山东省泰安中考模拟测试数学试题三(word版含答案),共8页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。