高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理学案
展开
这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理学案,共4页。学案主要包含了学习目标,学习重难点,学习过程,学习小结,精炼反馈等内容,欢迎下载使用。
空间向量基本定理 【学习目标】1.通过基底、基向量及向量的线性组合空间向量基本定理的学习,培养数学抽象素养.2.借助任一空间向量可用一组基向量线性表示,提升数学运算素养.【学习重难点】1.理解空间向量基本定理.(重点)2.运用空间向量基本定理解决一些几何问题.(难点)3.理解基底、基向量及向量的线性组合的概念.(重点)【学习过程】一、新知初探1.共面向量定理如果两个向量a,b不共线,则向量a,b,c共面的充要条件是存在唯一的实数对(x,y),使c=xa+yb.2.空间向量基本定理如果空间中的三个向量a,b,c不共面,那么对空间中的任意一个向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc.特别地,当a,b,c不共面时,可知xa+yb+zc=0时,x=y=z=0.3.相关概念(1)线性组合:表达式xa+yb+zc一般称为向量a,b,c的线性组合或线性表达式.(2)基底:空间中不共面的三个向量a,b,c组成的集合{a,b,c},常称为空间向量的一组基底.(3)基向量:基底{a,b,c}中a,b,c都称为基向量.(4)分解式:如果p=xa+yb+zc,则称xa+yb+zc为p在基底{a,b,c}下的分解式.4.拓展:设O,A,B,C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组{x,y,z},使=x+y+z,当且仅当x+y+z=1时,P,A,B,C四点共面.二、初试身手1.思考辨析(正确的打“√”,错误的打“×”)(1)若{a,b,c}为空间一个基底,则{-a,b,2c}也可构成空间一个基底.( )(2)若三个非零向量a,b,c不能构成空间的一个基底,则a,b,c共面.( )(3)若a,b是两个不共线的向量,且c=λa+μb(λ,μ∈R且λμ≠0),则{a,b,c}构成空间的一个基底.( )2.(教材P16练习A①改编)对于空间的任意三个向量a,b,2a-3b,它们一定是( )A.共面向量 B.共线向量C.不共面向量 D.既不共线也不共面的向量3.在长方体ABCDA1B1C1D1中,可以作为空间向量一个基底的是( )A.,, B.,,C.,, D.,,三、合作探究类型1向量共线问题【例1】如图所示,在正方体ABCDA1B1C1D1中,E在A1D1上,且=2,F在对角线A1C上,且=.求证:E,F,B三点共线. 类型2共面定理及应用【例2】已知A,B,C三点不共线,平面ABC外的一点M满足=++.(1)判断,,三个向量是否共面;(2)判断点M是否在平面ABC内. 类型3基底的判断及应用【例3】(1)若{a,b,c}是空间的一个基底,试判断{a+b,b+c,c+a}能否作为该空间的一个基底.(2)如图,在三棱柱ABCA′B′C′中,已知=a,=b,=c,点M,N分别是BC′,B′C′的中点,试用基底{a,b,c}表示向量,. 【学习小结】1.空间任意三个不共面的向量都可以作为空间向量的一个基底;基底选定后,任一向量可由基底唯一表示,空间中的基底是不唯一的.2.在用基底表示向量时,要结合图形的几何性质,充分利用向量的线性运算,逐步向基向量过渡,直到全部用基向量表示.【精炼反馈】1.O,A,B,C为空间四点,且向量,,不能构成空间的一个基底,则( )A.,,共线 B.,共线C.,共线 D.O,A,B,C四点共面2.给出下列命题:①若{a,b,c}可以作为空间的一个基底,d与c共线,d≠0,则{a,b,d}也可作为空间的基底;②已知向量a∥b,则a,b与任何向量都不能构成空间的一个基底;③A,B,M,N是空间四点,若,,不能构成空间的一个基底,那么A,B,M,N共面;④已知向量组{a,b,c}是空间的一个基底,若m=a+c,则{a,b,m}也是空间的一个基底.其中正确命题的个数是( )A.1B.2C.3D.43.从空间一点P引出三条射线PA,PB,PC,在PA,PB,PC上分别取=a,=b,=c,点G在PQ上,且PG=2GQ,H为RS的中点,则=________.(用a,b,c表示)4.设OABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则2x+4y+2z=________.5.如图所示,已知平行六面体ABCDA1B1C1D1,设=a,=b,=c,P是CA1的中点,M是CD1的中点.用基底{a,b,c}表示以下向量:(1);(2).
相关学案
这是一份高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.2 空间向量基本定理导学案及答案,共2页。学案主要包含了巩固诊断等内容,欢迎下载使用。
这是一份高中1.2 空间向量基本定理学案及答案,共5页。学案主要包含了复习回顾,讲授新知,典例讲评,新课讲解等内容,欢迎下载使用。
这是一份高中数学人教A版 (2019)选择性必修 第一册1.2 空间向量基本定理学案设计,共8页。学案主要包含了学习目标,自主学习,小试牛刀,经典例题,跟踪训练,当堂达标,参考答案等内容,欢迎下载使用。