终身会员
搜索
    上传资料 赚现金
    新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析01
    新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析02
    新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析

    展开
    这是一份新疆吐鲁番市高昌区市级名校2022年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了下列运算正确的是,下列实数中是无理数的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.下列图形中,既是中心对称图形,又是轴对称图形的是( )
    A. B. C. D.
    2.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是(  )

    A.① B.② C.③ D.④
    3.下列图形中,不是轴对称图形的是(  )
    A. B. C. D.
    4.下列运算正确的是(  )
    A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
    5.如图,直线a∥b,直线分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是  

    A.50° B.70° C.80° D.110°
    6.自1993年起,联合国将每年的3月11日定为“世界水日”,宗旨是唤起公众的节水意识,加强水资源保护.某校在开展“节约每一滴水”的活动中,从初三年级随机选出10名学生统计出各自家庭一个月的节约用水量,有关数据整理如下表.
    节约用水量(单位:吨)
    1
    1.1
    1.4
    1
    1.5
    家庭数
    4
    6
    5
    3
    1
    这组数据的中位数和众数分别是( )
    A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.
    7.如图,下列条件不能判定△ADB∽△ABC的是( )

    A.∠ABD=∠ACB B.∠ADB=∠ABC
    C.AB2=AD•AC D.
    8.如果边长相等的正五边形和正方形的一边重合,那么∠1的度数是( )

    A.30° B.15° C.18° D.20°
    9.若函数y=kx﹣b的图象如图所示,则关于x的不等式k(x﹣3)﹣b>0的解集为(  )

    A.x<2 B.x>2 C.x<5 D.x>5
    10.下列实数中是无理数的是(  )
    A. B.π C. D.
    11.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”
    如图所示,请根据所学知识计算:圆形木材的直径AC是(  )

    A.13寸 B.20寸 C.26寸 D.28寸
    12.要使分式有意义,则x的取值范围是( )
    A.x= B.x> C.x< D.x≠
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_____.
    14.对于一元二次方程,根的判别式中的表示的数是__________.
    15.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.
    16.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k =________

    17.将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,,若以点,,为顶点的三角形与相似,则的长度是______.

    18.如图,在等腰△ABC中,AB=AC,BC边上的高AD=6cm,腰AB上的高CE=8cm,则BC=_____cm

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=10t﹣5t1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t在什么范围时,飞行高度不低于15m?

    20.(6分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.
    (1)求A、B两种品牌的化妆品每套进价分别为多少元?
    (2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?
    21.(6分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
    (1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为   m.
    (2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)

    22.(8分)()如图①已知四边形中,,BC=b,,求:
    ①对角线长度的最大值;
    ②四边形的最大面积;(用含,的代数式表示)
    ()如图②,四边形是某市规划用地的示意图,经测量得到如下数据:,,,,请你利用所学知识探索它的最大面积(结果保留根号)

    23.(8分)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题:
    (1)请用t分别表示A、B的路程sA、sB;
    (2)在A出发后几小时,两人相距15km?

    24.(10分)画出二次函数y=(x﹣1)2的图象.
    25.(10分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
    根据统计图的信息解决下列问题:

    (1)本次调查的学生有多少人?
    (2)补全上面的条形统计图;
    (3)扇形统计图中C对应的中心角度数是   ;
    (4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
    26.(12分)解方程组.
    27.(12分)某企业信息部进行市场调研发现:
    信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:
    x(万元)
    1
    2
    2.5
    3
    5
    yA(万元)
    0.4
    0.8
    1
    1.2
    2
    信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.
    (1)求出yB与x的函数关系式;
    (2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;
    (3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据中心对称图形和轴对称图形对各选项分析判断即可得解.
    【详解】
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、不是中心对称图形,是轴对称图形,故本选项错误;
    C、既是中心对称图形,又是轴对称图形,故本选项正确;
    D、是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    2、A
    【解析】
    根据题意得到原几何体的主视图,结合主视图选择.
    【详解】
    解:原几何体的主视图是:

    视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
    故取走的正方体是①.
    故选A.
    【点睛】
    本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
    3、A
    【解析】
    观察四个选项图形,根据轴对称图形的概念即可得出结论.
    【详解】
    根据轴对称图形的概念,可知:选项A中的图形不是轴对称图形.
    故选A.
    【点睛】
    此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.
    4、B
    【解析】
    利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
    【详解】
    解:A、a2与a3不能合并,所以A选项错误;
    B、原式=a6÷a6=1,所以A选项正确;
    C、原式=a5,所以C选项错误;
    D、原式=2+2+3=5+2,所以D选项错误.
    故选:B.
    【点睛】
    本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    5、C
    【解析】
    根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
    【详解】
    因为a∥b,
    所以∠1=∠BAD=50°,
    因为AD是∠BAC的平分线,
    所以∠BAC=2∠BAD=100°,
    所以∠2=180°-∠BAC=180°-100°=80°.
    故本题正确答案为C.
    【点睛】
    本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
    6、D
    【解析】
    分析:中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    详解:这组数据的中位数是;
    这组数据的众数是1.1.
    故选D.
    点睛:本题属于基础题,考查了确定一组数据的中位数和众数的能力,要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    7、D
    【解析】
    根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
    【详解】
    解:A、∵∠ABD=∠ACB,∠A=∠A,
    ∴△ABC∽△ADB,故此选项不合题意;
    B、∵∠ADB=∠ABC,∠A=∠A,
    ∴△ABC∽△ADB,故此选项不合题意;
    C、∵AB2=AD•AC,
    ∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;
    D、=不能判定△ADB∽△ABC,故此选项符合题意.
    故选D.
    【点睛】
    点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.
    8、C
    【解析】
    ∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
    【详解】
    ∵正五边形的内角的度数是×(5-2)×180°=108°,正方形的内角是90°,
    ∴∠1=108°-90°=18°.故选C
    【点睛】
    本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键.
    9、C
    【解析】
    根据函数图象知:一次函数过点(2,0);将此点坐标代入一次函数的解析式中,可求出k、b的关系式;然后将k、b的关系式代入k(x﹣3)﹣b>0中进行求解即可.
    【详解】
    解:∵一次函数y=kx﹣b经过点(2,0),
    ∴2k﹣b=0,b=2k.
    函数值y随x的增大而减小,则k<0;
    解关于k(x﹣3)﹣b>0,
    移项得:kx>3k+b,即kx>1k;
    两边同时除以k,因为k<0,因而解集是x<1.
    故选C.
    【点睛】
    本题考查一次函数与一元一次不等式.
    10、B
    【解析】
    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
    【详解】
    A、是分数,属于有理数;
    B、π是无理数;
    C、=3,是整数,属于有理数;
    D、-是分数,属于有理数;
    故选B.
    【点睛】
    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    11、C
    【解析】
    分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.
    详解:设⊙O的半径为r.
    在Rt△ADO中,AD=5,OD=r-1,OA=r,
    则有r2=52+(r-1)2,
    解得r=13,
    ∴⊙O的直径为26寸,
    故选C.
    点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题
    12、D
    【解析】
    本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
    【详解】
    ∵3x−7≠0,
    ∴x≠.
    故选D.
    【点睛】
    本题考查的是分式有意义的条件:当分母不为0时,分式有意义.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.
    【点睛】
    本题考查概率公式,掌握图形特点是解题关键,难度不大.
    14、-5
    【解析】
    分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.
    【详解】
    解:表示一元二次方程的一次项系数.
    【点睛】
    此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.
    15、3或
    【解析】
    以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.
    【详解】

    如图作CM⊥AB
    当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF
    ∴△EDF~△DBE
    ∴EF∥CB,设EF交AD于点O
    ∵AO=OD,OE∥BD
    ∴AE= EB=3
    当∠FED=∠DEB时则
    ∠FED=∠FEA=∠DEB=60°
    此时△FED~△DEB,设AE=ED=x,作
    DN⊥AB于N,
    则EN=,DN=,
    ∵DN∥CM,


    ∴x
    ∴BE=6-x=
    故答案为3或
    【点睛】
    本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.
    16、1
    【解析】
    分析:设D(a,),利用点D为矩形OABC的AB边的中点得到B(2a,),则E(2a,),然后利用三角形面积公式得到•a•(-)=1,最后解方程即可.
    详解:设D(a,),
    ∵点D为矩形OABC的AB边的中点,
    ∴B(2a,),
    ∴E(2a,),
    ∵△BDE的面积为1,
    ∴•a•(-)=1,解得k=1.
    故答案为1.
    点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k的取值.
    17、或2
    【解析】
    由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.
    【详解】
    由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x
    当△B’FC∽△ABC,有,得到方程,解得x=,故BF=;
    当△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;
    综上BF的长度可以为或2.
    【点睛】
    本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.
    18、
    【解析】
    根据三角形的面积公式求出=,根据等腰三角形的性质得到BD=DC=BC,根据勾股定理列式计算即可.
    【详解】
    ∵AD是BC边上的高,CE是AB边上的高,
    ∴AB•CE=BC•AD,
    ∵AD=6,CE=8,
    ∴=,
    ∴=,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC=BC,
    ∵AB2−BD2=AD2,
    ∴AB2=BC2+36,即BC2=BC2+36,
    解得:BC=.
    故答案为:.
    【点睛】
    本题考查的是等腰三角形的性质、勾股定理的应用和三角形面积公式的应用,根据三角形的面积公式求出腰与底的比是解题的关

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)小球飞行时间是1s时,小球最高为10m;(1) 1≤t≤3.
    【解析】
    (1)将函数解析式配方成顶点式可得最值;
    (1)画图象可得t的取值.
    【详解】
    (1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,
    ∴当t=1时,h取得最大值10米;
    答:小球飞行时间是1s时,小球最高为10m;
    (1)如图,

    由题意得:15=10t﹣5t1,
    解得:t1=1,t1=3,
    由图象得:当1≤t≤3时,h≥15,
    则小球飞行时间1≤t≤3时,飞行高度不低于15m.
    【点睛】
    本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.
    20、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元
    【解析】
    (1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;
    (2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.
    【详解】
    (1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.

    解得:,
    答:A、B两种品牌得化妆品每套进价分别为100元,75元.
    (2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.
    根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,
    解得,5≤m≤10,
    利润是30m+20(50﹣m)=1000+10m,
    当m取最大10时,利润最大,
    最大利润是1000+100=1100,
    所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.
    【点睛】
    本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
    21、(1)11.4;(2)19.5m.
    【解析】
    (1)根据直角三角形的性质和三角函数解答即可;
    (2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
    【详解】
    解:(1)在Rt△ABC中,
    ∵∠BAC=64°,AC=5m,
    ∴AB=5÷0.44 11.4 (m);
    故答案为:11.4;
    (2)过点D作DH⊥地面于H,交水平线于点E,

    在Rt△ADE中,
    ∵AD=20m,∠DAE=64°,EH=1.5m,
    ∴DE=sin64°×AD≈20×0.9≈18(m),
    即DH=DE+EH=18+1.5=19.5(m),
    答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
    【点睛】
    本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
    22、(1)①;②;(2)150+475+475.
    【解析】
    (1)①由条件可知AC为直径,可知BD长度的最大值为AC的长,可求得答案;②连接AC,求得AD2+CD2,利用不等式的性质可求得AD•CD的最大值,从而可求得四边形ABCD面积的最大值;
    (2)连接AC,延长CB,过点A做AE⊥CB交CB的延长线于E,可先求得△ABC的面积,结合条件可求得∠D=45°,且A、C、D三点共圆,作AC、CD中垂线,交点即为圆心O,当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D',交AC于F,FD'即为所求最大值,再求得
    △ACD′的面积即可.
    【详解】
    (1)①因为∠B=∠D=90°,所以四边形ABCD是圆内接四边形,AC为圆的直径,则BD长度的最大值为AC,此时BD=,
    ②连接AC,则AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=AD×CD≤(AD2+CD2)=(a2+b2),所以四边形ABCD的最大面积=(a2+b2)+ab=;
    (2)如图,连接AC,延长CB,过点A作AE⊥CB交CB的延长线于E,因为AB=20,∠ABE=180°-∠ABC=60°,所以AE=AB×sin60°=10,EB=AB×cos60°=10,S△ABC=AE×BC=150,因为BC=30,所以EC=EB+BC=40,AC==10,因为∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,则△ACD中,∠D为定角,对边AC为定边,所以,A、C、D点在同一个圆上,做AC、CD中垂线,交点即为圆O,如图,

    当点D与AC的距离最大时,△ACD的面积最大,AC的中垂线交圆O于点D’,交AC于F,FD’即为所求最大值,连接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=AC×D’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.
    【点睛】
    本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD面积最大时,D点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.
    23、(1)sA=45t﹣45,sB=20t;(2)在A出发后小时或小时,两人相距15km.
    【解析】
    (1)根据函数图象中的数据可以分别求得s与t的函数关系式;
    (2)根据(1)中的函数解析式可以解答本题.
    【详解】
    解:(1)设sA与t的函数关系式为sA=kt+b,
    ,得,
    即sA与t的函数关系式为sA=45t﹣45,
    设sB与t的函数关系式为sB=at,
    60=3a,得a=20,
    即sB与t的函数关系式为sB=20t;
    (2)|45t﹣45﹣20t|=15,
    解得,t1=,t2=,
    ,,
    即在A出发后小时或小时,两人相距15km.
    【点睛】
    本题主要考查一次函数的应用,涉及到直线上点的坐标与方程,利用待定系数法求一次函数的解析式是解题的关键.
    24、见解析
    【解析】
    首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.
    【详解】
    列表得:
    x

    ﹣1
    0
    1
    2
    3

    y

    4
    1
    0
    1
    4

    如图:

    【点睛】
    此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.
    25、(1)150人;(2)补图见解析;(3)144°;(4)300盒.
    【解析】
    (1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.
    (2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.
    (3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.
    【详解】
    解:(1)本次调查的学生有30÷20%=150人;
    (2)C类别人数为150﹣(30+45+15)=60人,
    补全条形图如下:

    (3)扇形统计图中C对应的中心角度数是360°×=144°
    故答案为144°
    (4)600×()=300(人),
    答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.
    【点睛】
    本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.
    26、或.
    【解析】
    把y=x代入,解得x的值,然后即可求出y的值;
    【详解】
    把(1)代入(2)得:x2+x﹣2=0,
    (x+2)(x﹣1)=0,
    解得:x=﹣2或1,
    当x=﹣2时,y=﹣2,
    当x=1时,y=1,
    ∴原方程组的解是或.
    【点睛】
    本题考查了高次方程的解法,关键是用代入法先求出一个未知数,再代入求出另一个未知数.
    27、 (1)yB=-0.2x2+1.6x(2)一次函数,yA=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元
    【解析】
    (1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;
    (2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;
    (3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值
    【详解】
    解:(1)yB=-0.2x2+1.6x,
    (2)一次函数,yA=0.4x,
    (3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元, 则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,
    ∴当x=3时,W最大值=7.8,
    答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.

    相关试卷

    2022年甘肃省夏河县市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022年甘肃省夏河县市级名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,如图所示的几何体,它的左视图是等内容,欢迎下载使用。

    2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析: 这是一份2022届山东省高密市市级名校中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了一元二次方程的根的情况是,-3的相反数是等内容,欢迎下载使用。

    2022届新疆吐鲁番市高昌区市级名校中考猜题数学试卷含解析: 这是一份2022届新疆吐鲁番市高昌区市级名校中考猜题数学试卷含解析,共24页。试卷主要包含了下列运算正确的是,一、单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map